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Abstract

Many modern data analysts face the challenge of performing computations on sensitive

individual data, while at the same time protecting the privacy of those individuals. In this

thesis we will be interested in differential privacy [Dwork et al., TCC 2006], a mathematical

definition for privacy providing rigorous guarantees. Our research theme is driven by the

following question:

Question: When can we construct privacy preserving analogues to existing

data analysis algorithms, and what price do we pay?

We focus on the task of private learning [Kasiviswanathan et al., FOCS 2008], which

generalizes many of the analyses applied to large collections of data. Informally, a private

learner is applied to a database of labeled individual information and outputs a hypothesis

while preserving the privacy of each individual. Utility wise, this hypothesis should be

able to predict the labels corresponding to unseen individuals.

A natural measure for the price of privacy is the amount of data necessary in order to

privately identify a good hypothesis – a.k.a. the sample complexity. The sample complexity

of private learners is important, as it determines the amount of individual data that must

be collected before starting the analysis. We show new results about the possibility and

impossibility of learning tasks with differential privacy, and study the incurred price to

the sample complexity. In particular:

• We present a combinatorial characterization of the sample complexity of private

learners preserving pure ε-differential privacy, in terms of a new combinatorial

measure we call the representation dimension.

• We compare the sample complexity of private learning under pure ε-differential pri-

vacy and its relaxation approximate (ε,δ)-differential privacy [Dwork et al., Eurocrypt

2006]. We show that the sample complexity of private learning under approximate
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differential privacy can be significantly lower than that under pure differential pri-

vacy. To that end, we introduce a new tool for privately conducting binary searches.

• We also present new lower bounds separating (under some conditions) the sample

complexity of approximate differentially private learners from that of non-private

learners. These are the first non-trivial lower bounds on the sample complexity of

approximate differentially private learners.

We also study the reverse connection between privacy and learning, namely:

Question: Can differential privacy be used as a tool to construct new (non-

private) learning algorithms?

Recall that learning algorithms are aimed at identifying properties of the underlying

population, rather than properties of the given input data. Dwork et al. [STOC 2015]

showed that if a property of the given sample is identified by a differentially private

computation, then this property is in fact a property of the underlying population. This

connection can be used to construct new algorithms, in settings which are not directly

focused on privacy. Specifically, Dwork et al. used this connection for the task of answering

adaptively chosen statistical queries on the underlying population using a sample, showing

that if the answers are computed with (ε,δ)-differential privacy then O(ε) accuracy is

guaranteed with probability 1 −O(δε). We greatly simplify and improve the results of

Dwork et al. In particular:

• We show that (ε,δ)-differential privacy guarantees O(ε) accuracy with probability

1−O(δ/ε). We show that our bound is tight.

• Due to its simplicity, our proof extends beyond statistical queries, to the task of

answering a more general family of queries.

Keywords

Differential privacy, PAC learning, sample complexity, generalization.
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Chapter 1

Introduction

Data analysis – the process of extracting knowledge from data – is an extremely beneficial

technology, helping us improve upon nearly all aspects of life: Better medicine, better

science, education, business intelligence, and much more. Knowledge is power. However,

while the benefits of data analysis are rather self-evident, it is not without risks, and those

are often overlooked. The risks come from the fact that a lot of the analyzed data contains

private personal information, which, if revealed, might lead to embarrassment, loss of

social status, job loss, monetary loss, or even mortal danger in some cases.

Privacy concerns exist wherever personal information is involved, such as healthcare

records, financial records, web surfing behavior, and location-based services. At a high

level, we can identify two sources for a potential privacy breach. The first, and more

obvious, is security: If the (sensitive) data is leaked, stolen, or hacked, then privacy is

clearly violated. The second (less obvious) source is information released about the data: At

times, organizations and government agencies might want to publicly release (anonymized)

personal data, in the name of science, in order to enable valuable research to be undertaken.

In what sense should the data be anonymized? Is our privacy protected?

Question 1: How can we extract useful information from personal individ-

ual data, while ensuring the privacy of those individuals?

To further illustrate this point, let us imagine a health insurance company, in which

premiums are (partially) based on the medical status of insured family members (whose

data are available to the company). Indeed, if your family members have suffered a serious

medical condition, then there is, unfortunately, a greater chance that you will suffer the

same condition. Now assume that both you and your cousin are insured by this company,

and suppose that, out of the blue, the company bumps up your premiums. What does this

tell you about your cousin?
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In this thesis we study systems whose privacy guarantees are mathematically proven.

Such systems are provably resilient to any kind of (known or unknown) attacks. To that

end we must have a clear mathematical definition of privacy, as otherwise we could not

claim that privacy is preserved. The definition that will perform a leading role throughout

this thesis is that of differential privacy [44], a rigorous definition placing private data

analysis on firm foundations.

1.1 Differential Privacy

Consider a database S consisting of n rows from a data universe X, where each row holds

the information of one individual. We would like to analyze this database while ensuring

the privacy of each individual. Specifically, we would like to apply some data analysis

procedureM onto the database, and to obtain an outcome y such that: (i) the outcome

y is useful for the analysis task at hand; and (ii) privacy is preserved for each individual

whose data is in the database, even if y is publicly released. Under differential privacy, we

say that privacy is preserved if the outcome y does not reveal information that is specific

to any individual in the database. More formally, differential privacy requires that no

individual’s data has a significant effect on the distribution of the output y. Intuitively,

this guarantees that whatever is learned about an individual could also be learned with

her data arbitrarily modified (or without her data).

Definition 1.1 ([44, 38, 42]). A randomized algorithmM : Xn → Y is (ε,δ) differentially

private if for every two databases S,S ′ ∈ Xn that differ on one row, and every set T ⊆ Y , we have

Pr[M(S) ∈ T ] ≤ eε ·Pr[M(S ′) ∈ T ] + δ.

Observe that differential privacy is a property of the process, rather than its outcome.

The original definition from [44] had δ = 0, and is sometimes referred to as pure differential

privacy. However, a number of subsequent works have shown that allowing a small (but

negligible) value of δ, referred to as approximate differential privacy [42], can provide

substantial accuracy gains over pure differential privacy [43, 60, 48, 33, 11].

Differential privacy emerged from a line of work, called private data analysis [35, 46,
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15, 38, 44, 42], that has placed data privacy on firm theoretical foundations. This line of

research was initiated by Dinur, Dwork, and Nissim [35, 46], who demonstrated that a

mathematically rigorous treatment for privacy is possible. They considered a setting in

which a trusted data curator provides noisy answers to queries given by data analysts,

and proved, along positive results, that a substantial amount of noise must be added

in order to avoid a privacy breach. Indeed, privacy is achieved in differentially private

algorithms through randomization and the introduction of noise to obscure the effect of

each individual, and thus differentially private algorithms can be less accurate than their

non-private analogues. Nevertheless, by now a rich literature has shown that many data

analysis tasks of interest are compatible with differential privacy, and generally the loss in

accuracy vanishes as the number n of individuals tends to infinity. However, in many cases,

there is still is a price of privacy hidden in these asymptotics – in the rate at which the loss

in accuracy vanishes, and in how large n needs to be to start getting accurate results at all

(the “sample complexity”).

1.2 The Sample Complexity of Private Learning

We study the price of privacy for several tasks in data analysis. Due to space limitations,

we focus the presentation on one very important type of data analysis: PAC learning.

Motivated by the observation that learning generalizes many of the analyses applied

to large collections of data, Kasiviswanathan et al. [67] defined private PAC learning as

a combination of probably approximately correct (PAC) learning [90] and differential

privacy. For now, we can think of a PAC learner as an algorithm that operates on a set of

classified random examples, and outputs a hypothesis h that misclassifies fresh examples

with probability at most (say) 1
10 . It is assumed that all of the examples in the given

set were classified by the same (unknown) classification rule c, called the target concept,

taken from a (known) class of possible target concepts C. Importantly, the learner should

generalize the input data into a hypothesis h that accurately predicts the classification of

unseen random examples. In a case where h accurately classifies the input data, but fails

to do so on fresh random examples, we say that the learner (or the hypothesis) does not

generalize.

3



Intuitively, learning becomes “harder” as the class C becomes “richer”. A natural

problem is to characterize the sample complexity – the minimum number of examples

necessary in order to identify a good hypothesis – as a function of the target class C. This

important measure determines the amount of data that must be collected before starting

the analysis.

Without privacy, it is well-known that the sample complexity of PAC learning is pro-

portional to the Vapnik–Chervonenkis (VC) dimension of the class C [92, 19, 50]. We are

interested in learning algorithms that are also differentially private. Informally, this means

that the output of the learner (the chosen hypothesis) should not be significantly affected

by any particular example. In the initial work on private learning, Kasiviswanathan et

al. [67] proved that a private learner exists for every finite concept class. The proof is via a

generic construction that exhibits sample complexity logarithmic in |C|. The VC dimension

of a concept class C is always at most log |C|, but is significantly lower for many interesting

classes. Hence, the results of [67] left open the possibility that the sample complexity of

private learning may be significantly higher than that of non-private learning.

In the case of pure differential privacy (δ = 0), this gap in the sample complexity was

shown to be unavoidable in general. Consider the task of properly learning a concept class

C where, after consulting its sample, the learner outputs a hypothesis that is by itself in

C. While non-privately this restriction has no effect on the sample complexity, Beimel,

Brenner, Kasiviswanathan, and Nissim [8] showed that it can have a big impact for pure

differentially private learners. Specifically, Beimel et al. considered the concept class of

point functions over a data universe X, containing functions that evaluate to 1 on exactly

one element of the domain X. This class has VC dimension 1 and hence can be (properly)

learned without privacy with O(1) samples. Under pure differential privacy, Beimel et

al. presented an improper learner for point functions using O(1) samples. In contrast,

they showed that properly learning point functions with pure differential privacy requires

sample complexity Ω(log |X |), therefore separating the sample complexity of pure-private

proper-learners from that of non-private learners (see also [26]). Feldman and Xiao [51]

further showed that this separation holds even for improper learning, specifically, for the

class of threshold functions. This is the class of all functions that evaluate to 1 on a prefix

of the (totally ordered) domain X. While this class has VC dimension 1, Feldman and

4



Xiao showed that, under pure differential privacy, every (proper or improper) learner for

it requires sample complexity Ω(log |X |).

1.3 Our Contributions

We next describe the main contributions of this thesis. For space limitations, this thesis

only includes part of our relevant results. Omitted results are described in Section 1.4.

1.3.1 Characterizing the Sample Complexity of Pure-Private Learners

In analogy to the characterization of the sample complexity of (non-private) PAC learners

via the VC-dimension, in Chapter 5 we give a combinatorial characterization of the sample

size sufficient and necessary for pure-private PAC (improper) learners. Towards obtaining

this characterization, we introduce the notion of probabilistic representation of a concept

class.

Beimel, Brenner, Kasiviswanathan, and Nissim [8] defined the notion of a deterministic

representation for a concept class C. Informally, a deterministic representation for a concept

class C is a hypotheses class H such that for every target concept c from C there exists a

hypothesis h ∈H with small error w.r.t. c. Beimel et al. [8] showed that if |H | < |C| then the

deterministic representation can be used to improve the sample complexity of privately

learning C: Given an input sample, use the generic construction of Kasiviswanathan et

al. [67] to choose a good hypothesis out of H (instead from C). The generic construction

of [67] requires sample complexity logarithmic in the size of the hypotheses class, and

hence, the sample complexity is reduced to log |H |. While for some classes this can

dramatically improve the sample complexity, Beimel et al. showed that this technique

is not optimal. For example, while the class C of point functions can be improperly

learned (with pure privacy) using a constant sample complexity, they showed that every

deterministic representation for it must be of size at least |H | = Ω(log |C|).
We make an additional step in improving the sample complexity by considering a

probabilistic representation of a concept class C. Instead of one collection H representing C,

we consider a list of collections H1, . . . ,Hr such that for every c ∈ C and every distribution

on the examples, if we sample a collection Hi from the list, then with high probability there

5



is a hypothesis h ∈Hi that is close to c. To privately learn C, the learning algorithm first

samples i ∈ {1, . . . , r} and then uses the generic construction of Kasiviswanathan et al. [67]

to select a hypothesis from Hi . This reduces the sample complexity to O(maxi log |Hi |);
the size of the probabilistic representation is hence defined to be maxi log |Hi |. We show

that the size of the smallest probabilistic representation of a class C, which we call the

representation dimension and denote by RepDim(C), characterizes (up to constants) the

sample size necessary and sufficient for privately learning the class C. The work in this

chapter is joint with Amos Beimel and Kobbi Nissim (ITCS 2013) [10].

Following our work, Feldman and Xiao [51] showed an equivalence between the

representation dimension of a concept C and the randomized one-way communication

complexity of the evaluation problem for concepts from C. Using this equivalence, they

separated the sample complexity of pure-private learners from that of non-private ones.

For example, they showed a lower bound of Ω(log |X |) on the sample complexity of every

pure-private (proper or improper) learner for the class of threshold functions over a

domain X. This is a strong separation from the non-private sample complexity, which

is O(1) (as the VC dimension of this class is constant). Thus, the sample complexity of

pure-private learners (proper or improper) can generally be much higher than what is

required for non-private learning.

1.3.2 Private Learning: Pure vs. Approximate Differential Privacy

In Chapter 6, we show that relaxing the privacy requirement from pure to approximate

differential privacy can drastically reduce the sample complexity of private learners. In

particular, we show that threshold functions can be learned with approximate-privacy

using 2O(log∗ |X |) examples, a dramatic improvement over the Ω(log |X |) lower bound on the

sample complexity of every pure-private learner for this class [51]. For point functions,

we construct an approximate-private proper-learner with O(1) sample complexity, again

circumventing the lower bound of Ω(log |X |) for pure-private proper-learners.

Private Binary Search. Towards constructing our learners, we introduce a useful tool

for performing binary searches while preserving privacy: Consider a set F of possible

solutions, and let q : Xn×F→ R be a function that, given an input database S ∈ Xn, assigns

6



a number to every possible solution in F. Our goal is to (privately) choose a solution f ∈ F
such that q(S,f ) is as close as possible to a given parameter t.

Under some assumptions on the function q, this task could be solved using the expo-

nential mechanism of McSherry and Talwar [74] (to be surveyed in Chapter 3). This generic

mechanism is capable of privately identifying a solution f s.t. q(S,f ) ≈ t, provided that

|S | ≥ O(log |F|). By relaxing the privacy guarantees from pure to approximate differen-

tial privacy, we show that it is possible to significantly reduce the needed database size

to |S | ≥ 2O(log∗ |F|), whenever the solution set F is totally ordered and q(S, ·) is monotone.

As we will see, this abstraction captures the task of (privately) learning threshold func-

tions, and hence, our tool yields an improved upper bound on the sample complexity of

learning threshold functions under approximate differential privacy. The work in this

chapter is joint with Amos Beimel and Kobbi Nissim (RANDOM 2013 and Theory of

Computing) [11, 13].

1.3.3 Private Learning of Threshold Functions

Our positive results for approximate-private learners with very low sample complexity

raise the possibility that the sample complexity of approximate-private proper-learners is

actually of the same order as that of non-private learners. In Chapter 7, however, we show

that the sample complexity of proper learning with approximate differential privacy can

be asymptotically larger than the VC dimension. Specifically, we show for the first time

that private proper-learning of threshold functions is impossible when the data universe

is infinite (e.g., N or [0,1]) and in fact that the sample complexity must grow with the

size |X | of the data universe: n = Ω(log∗ |X |), which is tantalizingly close to the previously

mentioned upper bound of n = 2O(log∗ |X |).

This is the first non-trivial lower bound on the sample complexity of approximate-

private learners. As the VC dimension of the class of thresholds is one, this result also

separates the sample complexity of approximate-private proper-learners from that of non-

private learners. Our lower bound extends to the concept class of ℓ-dimensional thresholds.

An ℓ-dimensional threshold function, defined over the domain Xℓ, is a conjunction of

ℓ threshold functions, each defined on one component of the domain. While the VC-

dimension of this class is ℓ, our lower bound shows that Ω(ℓ · log∗ |X |) samples are required

7



for every approximate-private proper-learner for this class. This shows that our separation

between the sample complexity of private and non-private learning applies to concept

classes of every VC dimension.

Inspired by the techniques used to prove our lower bounds, we give an algorithm for

learning thresholds with n ≤ 2(1+o(1)) log∗ |X | samples. This improves our previous upper

bound of 8(1+o(1)) log∗ |X |. Based on these results, it would be interesting to fully characterize

the difference between the sample complexity of non-private learners and of proper

learners with (approximate) differential privacy. Even showing a stronger separation

(compared to log∗ |X |) would be interesting. Furthermore, our results still leave open

the possibility that improper PAC learning with (approximate) differential privacy has

sample complexity O(VC(C)). We consider this to be an important question for future

work. The work in this chapter is joint with Mark Bun, Kobbi Nissim, and Salil Vadhan

(FOCS 2015) [22].

1.3.4 The Generalization Properties of Differential Privacy

As supported by our discussion above, many learning tasks of interest are compatible with

differential privacy, i.e., private analogues exist for many learning tasks. In Chapter 4, our

first technical chapter, we start our exploration of intersection points between differential

privacy and learning theory by showing that, essentially, all you can do with differential

privacy is to learn. Namely, differential privacy implies learning. Recall that the general

task of computational learning is to identify properties of the underlying distribution,

rather than properties of a given sample. Roughly speaking, we will show that if a property

of a given sample is identified by a differentially private computation, then this property

is in fact a property of the underlying distribution. In other words, differential privacy

guarantees generalization.

This connection between differential privacy and generalization was first suggested by

McSherry.1 At a high level, McSherry observed that if a predicate h : X→ {0,1} is the result

of an (ε,δ)-differentially private computation on a sample S containing i.i.d. elements

from a distribution D, then the empirical average h(S) = 1
|S |

∑
x∈S h(x) and the expectation

h(D) = Ex∼D[h(x)] are close in expectation.

1See, e.g., [73], although the observation itself dates back at least to 2008.
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This connection has the potential of using differential privacy as a mathematical tool

in order to guarantee generalization, even in settings which are not focused on privacy.

Indeed, Dwork et al. [40] used this connection to develop techniques for preventing

overfitting and false discoveries in empirical research. Consider a data analyst interested

in testing a specific research hypothesis. The analyst acquires relevant data, evaluates

the hypothesis, and (say) learns that it is false. Based on her discoveries, the analyst now

decides on a second hypothesis to be tested, and evaluates it on the same data (acquiring

fresh data might be too expensive or even impossible). That is, the analyst chooses her

hypotheses adaptively, where this choice depends on previous interactions with the data.

As a result, her findings are no longer supported by classical statistical theory, which

assumes that the tested hypotheses are fixed before the data is gathered, and the analyst is

at risk of overfitting to the data. This problem has been identified as one of the primary

explanations of why research findings are frequently false (see, e.g., [64, 55]).

Dwork et al. model the problem as follows. The analyst, who is interested in learning

properties of an unknown distributionD, interacts with a data curatorA holding a database

S containing i.i.d. samples from D. The interaction is adaptive, where at every round

the analyst specifies a statistical query q : X → {0,1} and receives an answer aq(S) that

(hopefully) approximates q(D) = Ex∼D[q(x)]. Dwork et al. focused on the question of how

many samples S should contain to enable A to answer accurately.

Let k be the number of queries the analyst makes. Using the Hoeffding bound, it is easy

to see that if all k queries are fixed before interacting with A, then A could simply answer

every query q with its empirical average on S, i.e., letting aq(S) = 1
|S |

∑
x∈S q(x). Having

|S | = O
( log(k)

α2

)
would then suffice for making all k answers α-approximate. This approach

would however fail for the case where queries are chosen adaptively. Surprisingly, using

the connection between differential privacy and generalization, Dwork et al. [40] showed

that it is possible to answer k adaptively chosen queries when |S | grows logarithmically

with k.

In a nutshell, the idea of [40] is as follows. Suppose that A is a differentially private

algorithm, capable of approximating the empirical average of k adaptively chosen queries

(such mechanisms were intensively studied and constructed by the differential privacy

community). Then, by the inherent generalization properties of differential privacy, A’s
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answers must also be accurate w.r.t. the underlying distribution!

Of course, if differential privacy only guaranteed generalization in expectation, then

the answers would only be accurate in expectation, while we are typically interested in

high probability guarantees. To that end, Dwork et al. [40] substantially strengthened

this connection and showed that differential privacy implies generalization with high

probability. Specifically, they showed that every (ε,δ)-differentially private computation

guarantees O(ε) accuracy with probability 1−O(δε). This enabled Dwork et al. to obtain

algorithms that accurately answer adaptively chosen statistical queries, where accuracy is

guaranteed with high probability.

In Chapter 4 we strengthen the connection between differential privacy and gener-

alization, and show that every (ε,δ)-differentially private computation guarantees O(ε)

accuracy with probability 1−O(δ/ε). Observe that the failure probability in our bound is

significantly improved over the previous result of Dwork et al. This improvement enables

us to show improved upper bounds on the number of samples n that are needed to answer

adaptively chosen statistical queries. We also show that our bound is tight, i.e., there exists

an (ε,δ)-differentially private computation that achieves error ε with probability Θ(δ/ε).

The work in this chapter is joint with Raef Bassily, Kobbi Nissim, Adam Smith, Thomas

Steinke, and Jonathan Ullman (STOC 2016) [6].

1.4 Additional Contributions

We next describe additional results, which are omitted from this thesis due to space

limitations.

1.4.1 Semi-Supervised Private Learners

Recall that a PAC learner operates on a set of classified random examples, and outputs

a hypothesis that should be able to predict the classification of unseen examples. As

mentioned above, in Chapter 7 we show that, even with approximate-privacy, the sample

complexity of private learners can be asymptotically higher than that of non-private

learners. In [12] we study an alternative approach for reducing the costs of private learning.

Our work is inspired by the (non-private) models of semi-supervised learning [91] and active
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learning [72], where the focus is on the sample complexity of classified examples whereas

unclassified examples are of a significantly lower cost. Consider, for example, a hospital

conducting a study on a new disease. The hospital may already possess background

information about individuals and hence can access a large pool of unclassified examples,

but in order to classify an example, an actual medical test is needed. In such scenarios

it makes a lot of sense to try and use a combination of both classified and unclassified

examples in order to reduce the required amount of classified data.

Using two different constructions, we show that the classified sample complexity of

private learners is characterized by the VC dimension. Our first construction is of learners

where the classified sample complexity is proportional to the VC dimension of the concept

class C; however, the unclassified sample complexity of the algorithm is as big as log |C|.
Our second construction presents a new technique for decreasing the classified sample

complexity of a given private learner, while roughly maintaining its unclassified sample

complexity. In addition, we show that in some settings the classified sample complexity

does not depend on the privacy parameters of the learner. This work is joint with Amos

Beimel and Kobbi Nissim (SODA 2015) [12].

1.4.2 Simultaneous Private Learning of Multiple Concepts

Currently, no lower bounds are known on the sample complexity of approximate-private

improper-learners. On the other hand, there are no positive results for approximate-private

improper-learners that improve on the sample complexity of approximate-private proper-

learners. In [21] we explore a setting in which the sample complexity of approximate-

private improper-learners is provably higher than that of non-private learners. Specifically,

we investigate the direct-sum problem in the context of differentially private PAC learning:

What is the sample complexity of solving k learning tasks simultaneously under differential

privacy, and how does this cost compare to that of solving k learning tasks without privacy?

The direct-sum problem has its roots in complexity theory, and is a basic problem

for many algorithmic tasks. It also has implications for the practical use of differential

privacy. Consider, for instance, a hospital that collects information about its patients and

wishes to use this information for medical research. The hospital records for each patient a

collection of attributes such as age, sex, and the results of various diagnostic tests, and, for

11



each of k diseases, whether the patient suffers from the disease. Based on this collection of

data, the hospital researchers wish to learn good predictors for the k diseases. One option

for the researchers is to perform each of the learning tasks on a fresh sample of patients,

hence enlarging the number of patient examples needed (i.e., the sample complexity) by a

factor of k, which can be very costly.

Without concern for privacy, the sample complexity that is necessary and sufficient

for performing the k learning tasks is actually fully characterized by the VC dimension

of the target concept class – it is independent of the number of learning tasks k. In [21],

we examine if the situation is similar when the learning is performed with differential

privacy. Interestingly, we see that with differential privacy the picture is quite different,

and in particular, the required number of examples can grow polynomially in k (even for

improper-learning under approximate-differential privacy). This work is joint with Mark

Bun and Kobbi Nissim (ITCS 2016) [21].

1.4.3 Locating a Small Cluster Privately

Our exploration of the price of privacy in data analysis is not limited to PAC learners.

Clustering – the task of grouping data points by their similarity – is one of the most

commonly used techniques for exploring data, for identifying structure in uncategorized

data, and for performing a variety of machine learning and optimization tasks. In [78], we

present a new differentially private tool for a clustering-related task: Given a collection S

of n points in the ℓ-dimensional Euclidean space Rℓ and a parameter t reflecting a target

number of points, our goal is to find a smallest ball containing at least t of the input points,

while preserving differential privacy.

Finding an optimal solution for this problem is NP-hard even regardless of privacy

requirements [82], but good approximation solutions exist. In fact, without privacy, there

is a PTAS for computing a ball of radius (1 +α)ropt containing t points, where ropt is the

radius of a smallest ball enclosing t points, and α is the approximation parameter [1].

In [78], we present a differentially-private algorithm capable of identifying a ball of

radius O
(√

log(n) · ropt
)
, enclosing (almost) t points. Our algorithm has implications to

private data exploration, clustering, and removal of outliers. Furthermore, we use it to

significantly relax the requirements of the sample and aggregate technique [76], which
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allows compiling of “off the shelf” (non-private) analyses into analyses that preserve

differential privacy. Interestingly, an important ingredient in our construction is the tool

for conducting a (sample efficient) private binary search, which we developed towards

constructing an approximate-private proper-learner for the class of threshold functions

(see Section 1.3.2 of this introduction, or Chapter 6 for the technical details). This work is

joint with Kobbi Nissim and Salil Vadhan (PODS 2016) [78].

1.4.4 Private Query Release

Another very important type of data analysis that we consider is private query release. Given

a set Q of queries q : Xn→ R, the query release problem for Q is to output accurate answers

to all queries in Q. That is, we want a differentially private algorithm M : Xn → R|Q|

such that for every database S ∈ Xn, with high probability over y←M(S), we have that

|yq − q(S)| is at most (say) 1
10 for all q ∈Q.

A special case of interest is the case where Q consists of counting queries. In this case,

we are given a set Q of predicates q : X→ {0,1} on individual rows, and then extend them

to databases by averaging. That is, q(S) = 1
n

∑
x∈S q(x) counts the fraction of individuals in

the database that satisfy predicate q.

The query release problem for counting queries is one of the most widely studied

problems in differential privacy. Early work on differential privacy implies that for every

family of counting queries Q, the query release problem for Q has “sample complexity”

at most Õ(
√
|Q|) [35, 46, 15, 44]. That is, there is an n0 = Õ(

√
|Q|) such that for all n ≥ n0,

there is a differentially private mechanism M : Xn → RQ that solves the query release

problem for Q.

Remarkably, Blum, Ligett, and Roth [17] showed that if the data universe X is finite,

then the sample complexity grows much more slowly with |Q|— indeed the query release

problem for Q has sample complexity at most O(log |Q| · log |X |). Hardt and Rothblum [59]

improved this bound to Õ(log |Q| ·
√

log |X |), which was recently shown to be optimal for

some families Q [24].

However, for specific query families of interest, the sample complexity can be signif-

icantly smaller. In particular, consider the family of point functions over a domain X,

and the family of threshold functions over a totally ordered domain X. The query release
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problems for these families correspond to the very natural tasks of producing ℓ∞ approx-

imations to the histogram and to the cumulative distribution function of the empirical

data distribution, respectively. Recall that in Chapter 6 (see also Section 1.3.2 of this

introduction) we develop techniques for constructing approximate-private proper-learners

with low sample complexity. Those techniques can also be used to construct sample

efficient algorithms for answering all point and threshold functions. We show that for

point functions the sample complexity has no dependence on |X | (or |Q|, since |Q| = |X |
for these families), and for threshold functions, it has at most a very mild dependence,

namely 2O(log∗ |X |).

As with proper-learning of threshold functions, our results from Chapter 7 (see also

Section 1.3.3 in this introduction) can be used to show that the sample complexity of

releasing threshold functions over a data universe X with approximate differential privacy

is at least Ω(log∗ |X |). In particular, there is no differentially private algorithm for releasing

threshold functions over an infinite data universe.

14



Chapter 2

Related Literature

There is now an extensive amount of related literature on differential privacy, which we

cannot hope to cover here. Part of that literature, which is most relevant to this thesis, is

described throughout the introduction. Next we survey some additional related results,

and refer the reader to the excellent surveys in [47] and [89].

2.1 The Computational Price of Differential Privacy

In this thesis we study the effects of privacy on the sample complexity of data analysis.

Another very basic measure for the price of privacy in data analysis is computational

complexity, i.e., the required increase in running time in order to guarantee privacy while

analyzing data.

2.1.1 Private Learning

Recall that a PAC learner is given a set of random examples, all of which are classified by

some fixed target concept, and aims at identifying a good hypothesis w.r.t. this fixed target

concept (and the underlying distribution). A basic problem in learning theory, however, is

to construct learning algorithms that are able to cope with incorrectly classified examples.

In the random classification noise model of Angluin and Laird [2], the label of each example

is flipped with some fixed probability η, called the noise rate. A powerful framework for

constructing computationally-efficient noise-tolerant learning algorithms is the statistical

queries (SQ) learning model of Kearns [68]. In the SQ model, instead of accessing examples

directly, the learner can specify some properties on the examples, for which he is given

an estimate of the probability that a random example satisfies the property. As Kearns
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showed, any class of functions that is learnable from statistical queries is learnable with

random classification noise. Moreover, the SQ model is known to be very powerful, and in

fact, most existing PAC learners have SQ analogues.

Intuitively, noise-tolerant learning seems to be related to private learning as both kinds

of learners are required to be robust to small changes in the input. Indeed, Blum et al. [15]

showed that any learner in the SQ model can be transformed to preserve differential

privacy, while maintaining computational efficiency. As the SQ model captures most of

the efficiently learnable classes, this implies that many computational learning tasks that

are efficiently learnable non-privately can be learned privately and efficiently. In addition,

Kasiviswanathan et al. [67] showed an example of a concept class – the class of parity

functions – that is not learnable in the statistical queries model but can be learned privately

and efficiently (learning parity with noise is conjectured to be computationally hard).

However, as was recently shown by Bun and Zhandry [25], there are concept classes that

are efficiently PAC learnable, but for which every efficient learner fails to be differentially

private (under plausible computational hardness assumptions).

2.1.2 Private Query Release

Consider again the query release problem for counting queries, where we seek a mechanism

that, given a database S ∈ Xn, releases approximate answers to all queries in some family

of counting queries Q. When |Q| is large, an efficient algorithm cannot output an answer

for every q ∈ Q directly. Instead, it is required to produce a data structure capable of

approximating q(S) for every q ∈ Q. It is especially desirable to construct mechanisms

whose output is defined in terms of an alternative database Ŝ ∈ X∗ satisfying q(S) ≈ q(Ŝ)

for every q ∈Q. Such an alternative database Ŝ is called a synthetic database.

Without privacy, computing a “synthetic database” is trivial, as it is possible to simply

output the input database S. With privacy, computing a synthetic database is known to

be computationally feasible for some families Q of counting queries. For example, our

techniques from Chapter 6 can be used to construct time efficient algorithms producing a

synthetic database for all point and threshold functions. In general, however, this is not the

case, and hardness results were given in a number of works, originating with the work of

Dwork, Naor, Reingold, Rothblum, and Vadhan [45]. Interestingly, those hardness results
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are based on a connection to traitor-tracing schemes – a cryptographic tool for preventing

illegal distribution of digital content – introduced in 1994 by Chor et al. [29].

Indeed, under standard hardness assumptions, Ullman and Vadhan [88] proved the

existence of a “natural” family Q of counting queries on a data universe X, where |Q| =
O(log2 |X |), such that there is no n = poly(log |X |) and a polynomial-time differentially

private algorithm that takes a database S ∈ Xn and outputs a synthetic database Ŝ ∈ X∗

providing accurate answers to every query in Q. That is, producing synthetic databases is

hard even for simple families of counting queries of size o(n).

One might hope that by allowing our mechanisms to output an arbitrary data-structure,

rather than a synthetic database, private query release would become feasible for large

families of queries, of size exponential in n. However, under plausible hardness assump-

tions, a recent result by Kowalczyk et al. [71] shows that this is not the case. Specifically,

for every n, there is a family Q of Õ(n7) counting queries on a data universe X such that

there is no polynomial-time differentially private algorithm that takes a database S ∈ Xn

and outputs accurate answers to every query in Q. See also [45].

The best known efficient mechanism for answering an arbitrary set of counting queries

is the Laplace mechanism [44] (to be surveyed in Chapter 3), capable of approximating

Õ(n2) queries. Seemingly, therefore, there is a gap between the best general construction,

answering Õ(n2) arbitrary counting queries, and the hardness results for families of Õ(n7)

counting queries. Actually, the Laplace mechanism is interactive (or universal) in the sense

that the queries are not fixed but are instead given as input to the mechanism. The above

mentioned hardness results are for the non-interactive setting, stating that for every n

there is a family of size Õ(n7) that is hard to approximate by any differentially private

mechanism operating on databases of size n. As Ullman [87] showed, under standard

hardness assumptions, there is no private and efficient universal algorithm that accurately

answers more than Õ(n2) arbitrary counting queries, and the Laplace mechanism is (in

general) optimal for the interactive setting.
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2.2 Interactive Query Release

In Chapters 6 and 7 we study the sample complexity of privately learning the class of

threshold functions. As we mentioned, our techniques also apply to the task of private

query release. Specifically, we show that there is an efficient mechanism that privately

releases approximate answers to all of the threshold functions over a domain X, using a

database of size n = 2O(log∗ |X |). Moreover, every such mechanism requires a database of size

n = Ω(log∗ |X |).
In [23], Bun, Steinke, and Ullman considered the problem of privately releasing ap-

proximate answers to adaptively given threshold queries. Consider, for example, the class

of threshold functions over an infinite domain X. As our results in Chapter 7 show, it

is impossible to privately release approximate answers to all of those (infinitely many)

threshold functions. Nevertheless, if we are only interested in getting accurate answers for

k of the threshold functions, which are fixed in advance, then a database of size n = 2O(log∗ k)

suffices to produce accurate answers to those k threshold functions (by simply ignoring all

of the other functions).

What can we do if the queries are given one by one, in an on-line fashion? The trivial

solution would be to use the Laplace mechanism capable of privately approximating k

adaptively chosen (arbitrary) counting queries (not limited to thresholds). This solution

requires a database of size n ≈
√
K . Bun et al. [23] presented an efficient mechanism

for privately approximating k adaptively chosen thresholds using a database of size

logarithmic in k.

Recall that in the general setting – where the adaptive queries are not restricted

to a sub family of counting queries – privately answering more than Õ(n2) queries is

computationally hard [87]. Hence, by restricting the adaptive queries to come from a

specific sub family of counting queries, it is possible to answer exponentially more queries

efficiently. See also [18].

Another interesting approach is the following. Consider a large number of arbitrary

counting queries f1, f2, . . ., which are given (one by one) to a data curator (holding a database

S ∈ Xn). In every round, we would like to receive, in a differentially private manner, an

approximation to fi(S). In some cases, however, we might only be interested in obtaining
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answers for the queries fi whose answers are “meaningful”. More specifically, we have some

threshold T in mind, and we only care to receive answers to queries s.t. fi(S) ≥ T . Dwork,

Naor, Reingold, Rothblum, and Vadhan [45] presented a simple (and elegant) tool for such

a scenario – Algorithm AboveThreshold. Loosely speaking, Algorithm AboveThreshold

is capable of answering c “meaningful” queries (out of a stream of k queries) using a

database of size n = Õ(log(k) ·
√
c). Moreover, it is computationally efficient.

The interactive query release problem was also studied from an information-theoretic

perspective, showing that (ignoring running time) it is possible to privately answer an

exponential number of arbitrary counting queries, chosen adaptively. This was first

done by Roth and Roughgarden [80] who presented a mechanism that answers k such

queries using a database of size ≈ log |X | · log3(k). Their work was improved by Hardt and

Rothblum [59], who presented a mechanism with both improved accuracy and running

time, capable of answering k adaptively chosen queries using a database of size ≈
√

log |X | ·
log(k). The results of [80] and [59] were later unified by Gupta, Roth, and Ullman [57],

who presented framework that generalizes both mechanisms.

Recall that (interactive) query release mechanisms should provide answers which are

accurate w.r.t. their input database S. If the input database S was sampled i.i.d. from some

underlying distribution D, then such mechanisms are capable of privately approximating

the empirical average of k adaptively chosen predicates (i.e., counting queries). As we

mentioned in Section 1.3.4, such mechanisms will be used as an important building block

in Chapter 4, where we construct of algorithms that answer adaptively chosen statistical

queries w.r.t. the underlying distribution.

2.3 Answering Adaptively Chosen Statistical Queries

Multiple hypothesis testing is a ubiquitous task in empirical research. A finite sample

of data is drawn from some unknown population, and several analyses are performed

on that sample. The outcome of an analysis is deemed significant if it is unlikely to have

occurred by chance alone, and a “false discovery” occurs if the analyst incorrectly declares

an outcome to be significant. False discovery has been identified as a substantial problem

in the scientific community (see, e.g., [64, 55]). This problem persists despite decades of
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research by statisticians on methods for preventing false discovery, such as the widely

used Bonferroni Correction [20, 36] and the Benjamini-Hochberg Procedure [14].

False discovery is often attributed to misuse of statistics. An alternative explanation

is that the prevalence of false discovery arises from the inherent adaptivity in the data

analysis process – the fact that the choice of analyses to perform depends on previous

interactions with the data (see, e.g., [55]). Adaptivity is essentially unavoidable when

a sequence of research groups publish research papers based on overlapping data sets.

Adaptivity also arises naturally in other settings, for example: in multistage inference

algorithms where data are preprocessed (say, to select features or restrict to a principal

subspace) before the main analysis is performed; in scoring data-based competitions [16];

and in the re-use of holdout or test data [41, 39].

The general problem of adaptive data analysis was formally modeled and studied in

recent papers by Dwork, Feldman, Hardt, Pitassi, Reingold, and Roth [40] and by Hardt

and Ullman [61] as follows: Suppose there is an unknown distribution D and a set of n

independent samples S is drawn from D. We seek an algorithm that, given S as input,

accurately answers a sequence of adaptively chosen statistical queries about the unknown

distribution D. How many samples n must we draw from the distribution, as a function of

the number of queries k, and the desired level of accuracy α?

The textbook solution to this problem would be to split the sample S into k chunks,

and then to answer every given query using its empirical average on a “fresh” chunk of

the data. In order to answer k queries, this solution requires a sample of size n = Ω(k/α2).

In the non-adaptive setting, where the k queries are fixed before the data is gathered, it is

possible to simply answer every query using its empirical average on the sample S, i.e.,

letting aq(S) = 1
|S |

∑
x∈X q(s). By the Hoeffding bound, a sample of size n = O(log(k)/α2)

would then suffice for making all k answers accurate to within error α. This approach

would however fail for the case where queries are chosen adaptively, and it can easily be

shown that a sample of size linear in k is necessary in order for the empirical average to

maintain accuracy.

The striking results of Dwork et al. [40] gave the first nontrivial algorithms for provably

ensuring statistical validity in adaptive data analysis, allowing for even an exponential

number of tests against the same sample. However, their construction is computationally

20



inefficient. They also presented an efficient algorithm allowing to answer k adaptively

chosen statistical queries to within error α using a sample containing n = Õ(
√
k/α2.5). The

dependency of this upper bound in k was shown to be tight by Hardt and Ullman [61]

and Steinke and Ullman [85]. Under standard hardness assumptions, they showed that a

sample of size n = Ω(
√
k/α) is necessary in order to answer k adaptively chosen statistical

queries to within accuracy α. In Chapter 4 we present an improved upper bound, showing

that a sample of size n = Õ(
√
k/α2) suffices.

2.4 Other Related Work

A line of research (started by Schapire [81]) that is very relevant to this thesis is boosting

learning algorithms, that is, taking a learning algorithm that has a big classification

error and producing a learning algorithm with small error. The construction of boosting

algorithms has received a lot of attention after the seminal work of [81] (see, e.g., [54, 52,

34]); perhaps the most significant construction is the AdaBoost algorithm of Schapire and

Freund [53] (who won the Gödel Prize for their work).

In 2010, Dwork, Rothblum, and Vadhan [48] presented a differentially private variant of

the AdaBoost algorithm, where given a private learning algorithm with large classification

error, they produce a private learning algorithm with small error. In Chapter 5, we give an

alternative technique for boosting the accuracy of pure-private learners, whose proof is

simpler. However, it is (generally) not computationally efficient.

This research theme of constructing private variants to influential learning algorithms

is not limited to boosting algorithms. A lot of the works in this vein, however, does not

exactly fit the PAC learning model, and are thus less relevant to this thesis. For example,

Chaudhuri et al. [27] gave a general technique for producing privacy-preserving variants

for convex empirical risk minimization (ERM) algorithms. Their results were extended by

Kifer et al. [70] and Bassily et al. [7], who produced algorithms with improved error rates.

In particular, those results yield private variants to logistic regression and support vector

machine classifiers.
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Chapter 3

Background and Preliminaries

In this chapter we introduce the necessary preliminaries for the main tasks discussed in

this thesis. Additional preliminaries will be given throughout when needed. We use X to

denote an arbitrary domain, and use Xn for the cartesian nth power of X, i.e., Xn = (X)n.

3.1 Differential privacy

Differential privacy aims at protecting information of individuals. We consider a database,

where each entry contains information pertaining to an individual. An algorithm operating

on databases is said to preserve differential privacy if a change of a single record of the

database does not significantly change the output distribution of the algorithm. Intuitively,

this means that whatever is learned about an individual could also be learned with her

data arbitrarily modified (or without her data). Formally:

Definition 3.1. Databases S1 ∈ Xn and S2 ∈ Xn over a domain X are called neighboring if

they differ in exactly one entry.

Definition 3.2 (Differential Privacy [44, 38, 42]). A randomized algorithm A : Xn→ Y is

(ε,δ)-differentially private if for all neighboring databases S1,S2 ∈ Xn, and for all sets F ⊆ Y of

outputs,

Pr[A(S1) ∈ F] ≤ exp(ε) ·Pr[A(S2) ∈ F] + δ. (3.1)

The probability is taken over the random coins of A. When δ = 0 we omit it and say that A
preserves ε-differential privacy.
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We use the term pure differential privacy when δ = 0 and the term approximate differen-

tial privacy when δ > 0, in which case δ is typically a negligible function of the database

size n.

3.1.1 Properties of Differential privacy

Suppose that a differentially private algorithm A is executed on a (sensitive) database S,

and that the outcome y is publicly released. Once released, arbitrary additional analyses

might be applied to the outcome y. It is out of our hands. An important property of

differential privacy is its resiliency to post-processing, ensuring that the privacy guarantees

could not be weakened by any such additional analyses.

Theorem 3.3 (post-processing). If A : Xn→ Y is (ε,δ)-differentially private, and B : Y → Z

is any randomized function, then B(A(·)) : Xn→ Z is (ε,δ)-differentially private.

We will later present algorithms that access their input database using (several) dif-

ferentially private mechanisms. For example, let A1 : Xn → Y and A2 : Xn → Y be

two (ε,δ)-differentially private mechanisms. Now suppose we construct an algorithm

B : X2n→ Z that takes a database of size 2n, and applies A1 to the first n elements, and

A2 to the last n elements (and does not access the database otherwise). Theorem 3.3 imme-

diately implies that algorithm B is (ε,δ)-differentially private. To see this, observe that for

every fixture of the first n elements, algorithm B is a post-processing of the outcome of

A2. Similarly, for every fixture of the last n elements, algorithm B is a post-processing of

the outcome of A1. Privacy is therefore preserved, as two neighboring databases of size

2n either differ on one of the first n elements, or on one of the last n elements, but not on

both.

So, an algorithm that applies several (ε,δ)-differentially private mechanisms to different

portions of its database (and does not access the database otherwise), remains (ε,δ)-

differentially private. What about algorithms that apply several private mechanisms onto

the same portion of the database? As the following composition theorems show, privacy is

still preserved, but the privacy guarantees (gracefully) deteriorate.

Theorem 3.4 ([42]). If A1 and A2 satisfy (ε1,δ1) and (ε2,δ2) differential privacy, respectively,

then their concatenation A(S) = ⟨A1(S),A2(S)⟩ satisfies (ε1 + ε2,δ1 + δ2)-differential privacy.
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Moreover, a similar theorem holds for the adaptive case, where a mechanism interacts

with k adaptively chosen differentially private mechanisms.

Theorem 3.5 ([42, 43]). A mechanism that permits k adaptive interactions with mechanisms

that preserve (ε,δ)-differential privacy (and does not access the database otherwise) ensures

(kε,kδ)-differential privacy.

Note that the privacy guaranties in the theorem deteriorates linearly with the number

of interactions. By bounding the expected privacy loss in each interaction (as opposed to

worst-case), Dwork et al. [48] showed the following stronger composition theorem, where

privacy deteriorates (roughly) as
√
kε+ kε2 (rather than kε).

Theorem 3.6 ([48], restated). Let 0 < ε,δ′ ≤ 1, and let δ ∈ [0,1]. A mechanism that permits k

adaptive interactions with mechanisms that preserve (ε,δ)-differential privacy (and does not

access the database otherwise) ensures (ε′, kδ + δ′)-differential privacy, for ε′ =
√

2k ln(1/δ′) · ε +

2kε2.

This composition theorem was subsequently improved by [65], who presented an

optimal composition bound for differential privacy. Unfortunately, this bound is quite

complex, and is #P-hard to compute exactly [75].

Another important property of differential privacy is group privacy. Recall that differ-

ential privacy ensures that every single individual does not have a significant effect on the

outcome (distribution) of the computation. A similar guarantee also holds for every small

group of individuals:

Theorem 3.7 (group privacy). If A : Xn→ Y is (ε,δ)-differentially private, then for all pairs

of databases S1,S2 ∈ Xn that differ in at most k entries, and for every set of outputs F ⊆ Y ,

Pr[A(S1) ∈ F] ≤ ekε ·Pr[A(S2) ∈ F] + k · ekε · δ.

3.2 Preliminaries from Learning Theory

A concept c : X → {0,1} is a predicate that labels examples taken from the domain X by

either 0 or 1. A concept class C over X is a set of concepts (predicates) mapping X to {0,1}.
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We now present two simple concept classes that will reappear throughout this thesis, and

serve as running examples throughout this chapter.

Definition 3.8 (Point Functions). Let X be any domain. The class of point functions is the set

of all predicates that evaluate to 1 on exactly one element of X, i.e.,

POINTX = {cx : x ∈ X} where cx(y) = 1 iff y = x.

Definition 3.9 (Threshold Functions). Let X be any totally ordered domain. The class of

threshold functions is the set of all predicates that evaluate to 1 on a prefix of X, i.e.,

THRESHX = {cx : x ∈ X} where cx(y) = 1 iff y ≤ x.

3.2.1 The PAC Model

Let C be a concept class over a domain X. A learning algorithm for the class C is given

examples sampled according to an unknown probability distributionD over X, and labeled

according to an unknown target concept c ∈ C. The learning algorithm is successful when

it outputs a hypothesis h that approximates the target concept over samples from D. More

formally:

Definition 3.10 (Generalization Error). Let h : X→ {0,1} be a hypothesis. The generalization

error of h w.r.t. a concept c : X→ {0,1} and a distribution D on X is defined as

errorD(c,h) = Pr
x∼D

[h(x) , c(x)].

More generally, we define the generalization error of h w.r.t. a distribution P over X × {0,1} as

errorP (h) = Pr
(x,y)∼P

[h(x) , y].

We say that h is α-good whenever its generalization error is at most α.

Definition 3.11 (PAC Learning [90]). AlgorithmA is an (α,β)-PAC learner with sample size

n for a concept class C over X using hypothesis class H if for all concepts c ∈ C, all distributions
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D on X, given an input of n samples S = (z1, . . . , zn) ∈ (X × {0,1})n, where zi = (xi , c(xi)) and

each xi is drawn i.i.d. from D, algorithm A outputs a hypothesis h ∈H satisfying

Pr[errorD(c,h) ≤ α] ≥ 1− β.

The probability is taken over the random choice of the examples in S according to D and the

coin tosses of the learner A. If H ⊆ C then A is called a proper learner; otherwise, it is called an

improper learner.

That is, a PAC learner takes a finite labeled sample S and outputs a hypothesis that

should accurately label fresh examples taken from the underlying distribution. A common

technique for constructing such learners is to identify a hypothesis h with small empirical

error on the sample S, and then argue that this h also has small generalization error.

Definition 3.12 (Empirical Error). For a labeled sample S = (xi , yi)
n
i=1, the empirical error of

h is

errorS(h) =
1
n

∣∣∣{i : h(xi) , yi}
∣∣∣ .

If errorS(h) = 0 we say that h is consistent with S.

As an example, let us now construct a simple (proper) PAC learner for the class

of threshold functions. The algorithm takes a labeled sample S = (xi , yi)
n
i=1 sampled

i.i.d. from an (unknown) distribution D and labeled by an (unknown) target concept

cj ∈ THRESHX , where cj is s.t. cj(x) = 1 iff x ≤ j. The algorithm returns an arbitrary

hypothesis h = cℓ ∈ THRESHX s.t. errorS(cℓ) = 0. Such a concept exists in THRESHX , as, in

particular, this is the case for the target concept cj .

To see that our algorithm is indeed a PAC learner for the thresholds class, fix a distri-

bution D on X and a target concept cj ∈ THRESHX . Let L,R ⊆ X denote the two intervals

of mass α (under D) to the left and to the right of the point j. Observe that a hypothesis

from THRESHX with generalization error bigger than α either errs on every point in L, or

errs on every point in R. Thus, assuming that the sample S contains both a point from L

and a point from R, every hypothesis with generalization error bigger than α has non-zero

empirical error. As we will now see, provided that n is big enough, the probability that the

sample S does not include points from L and R is small.
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3.2.2 The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis (VC) Dimension is a combinatorial measure of concept classes,

which characterizes the sample size of PAC learners.

Definition 3.13 ([92]). Let C be a concept class over a domain X, and let B = {b1, . . . , bℓ} ⊆ X.

The set of all dichotomies (behaviors) on B that are realized by C is

ΠC(B) =
{
(c(b1), . . . , c(bℓ)) : c ∈ C

}
.

Observe that ΠC(B) is a subset of {0,1}ℓ (as c ∈ C maps into {0,1}). The set of di-

chotomies ΠC(B) can be viewed as the “projection” of C on B. For example, let X be

a totally ordered domain, and let B = {b1, . . . , bℓ} ⊆ X where b1 < b2 < · · · < bℓ. For the

class of threshold functions we have that ΠTHRESHX
(B) contains all the vectors of the form

(1,1, . . . ,1,0,0, . . . ,0) ∈ {0,1}ℓ. For the class of point functions we have that ΠPOINTX
(B)

contains all the vectors of the form (0,0, . . . ,0,1,0, . . . ,0) ∈ {0,1}ℓ.

Definition 3.14 ([92]). A set B ⊆ X is shattered by C if ΠC(B) = {0,1}ℓ (where ℓ = |B|).

That is, B ⊆ X is shattered by C if C realizes all possible dichotomies over B, i.e.,

|ΠC(B)| = 2ℓ. For example, observe that there is no set B ⊆ X of size |B| ≥ 2 that is shattered

by THRESHX or by POINTX .

Definition 3.15 (VC-Dimension [92]). The VC-Dimension of a concept class C (over a domain

X), denoted as VC(C), is the cardinality of the largest set B ⊆ X shattered by C. If arbitrarily

large finite sets can be shattered by C, then VC(C) =∞.

So, VC(THRESHX) = VC(POINTX) = 1. In general, observe that as ΠC(B) ≤ |C|, a set B can

be shattered only if |B| ≤ log |C| and hence VC(C) ≤ log |C|.

3.2.3 VC Bounds

Classical results in computational learning theory state that a sample of size θ(VC(C)) is

both necessary and sufficient for the PAC learning of a concept class C. The following two

theorems give upper and lower bounds on the sample complexity.
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Theorem 3.16 ([50]). Any algorithm for PAC learning a concept class C must have sample

complexity Ω(VC(C)
α ), where α is the approximation parameter.

Theorem 3.17 (VC-Dimension Generalization Bound [19]). Let D and C be, respectively, a

distribution and a concept class over a domain X, and let c ∈ C. For a sample S = (xi , c(xi))
n
i=1

where n ≥ 64VC(C)
α ln(512

αβ ) and the xi are drawn i.i.d. from D, it holds that

Pr
[
∃ h ∈ C : errorD(h,c) > α ∧ errorS(h) ≤ α

2

]
≤ β.

So, for any concept class C, any algorithm that takes a sample of n = Ωα,β(VC(C))

labeled examples and produces a hypothesis h ∈ C with small empirical error is a PAC

learner for C. In particular, as is common with non-private learners, it suffices to identify

a consistent hypothesis h with empirical error 0. However, when privacy is introduced,

we will be forced to identify a hypothesis with small (but non-zero) empirical error, as

privately identifying a consistent hypothesis might be impossible.

Such an algorithm is a PAC learner for C using C (that is, both the target concept and

the returned hypotheses are taken from the same concept class C), and, therefore, there

always exist a hypothesis h ∈ C with small empirical error (e.g., the target concept itself).

The next theorem handles the agnostic case, in which a learning algorithm for a concept

class C uses a hypotheses class H s.t. C ⊈H . In particular, given a sample S (labeled by

some c ∈ C), a hypothesis with small empirical error might not exist in H .

Theorem 3.18 (VC-Dimension Agnostic Generalization Bound [4, 3]). Let P be a distribution

over (X × {0,1}), and let H be a hypothesis class. For a sample S = (xi , yi)
n
i=1 where n ≥

50VC(H)
α2 ln( 1

αβ ) and {(xi , yi)} are drawn i.i.d. from P , we have

Pr
[
∀ h ∈H :

∣∣∣errorP (h)− errorS(h)
∣∣∣ ≤ α

]
≥ 1− β.

Notice that in the agnostic case the sample complexity is proportional to 1
α2 , as opposed

to 1
α when learning a class C using C.
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3.3 Generalization Bounds for Points and Thresholds

It turns out that we can already use the simple concept classes of point and threshold

functions in order to illustrate an interesting phenomenon. Recall Theorem 3.17 stating

that every hypothesis with low empirical error also has low generalization error, provided

that the sample size is at least n ≥ O( 1
α VC(C) log(1/α)). For some specific cases, such as

threshold functions, we can obtain an improved bound without the log(1/α) factor:

Lemma 3.19 (Generalization Bound for Thresholds, e.g., [69]). Let D be a distribution

over a (totally ordered) domain X, and let c ∈ THRESHX . For a sample S = (xi , c(xi))
n
i=1 where

n ≥ 8
α ln( 2

β ) and the xi are drawn i.i.d. from D, it holds that

Pr
[
∃ h ∈ THRESHX : errorD(h,c) > α ∧ errorS(h) ≤ α

2

]
≤ β.

On the other hand, for different concept classes, such as point functions, the log(1/α)

factor is necessary in order to ensure that all hypotheses with small empirical error have

low generalization error:

Lemma 3.20 ([5, 83]). Let α < 1, and let X be a domain s.t. |X | > ⌈ 1
α ⌉. Let n denote the minimal

sample size s.t. for every target concept c ∈ POINTX and every distribution D on X we have that

Pr[∃ h ∈ POINTX : errorD(h,c) > α ∧ errorS(h) = 0] ≤ 1/2.

The probability is over the sample S = (xi , c(xi))
n
i=1 where the xi are drawn i.i.d. from D. Then,

n = Ω

(1
α

log
(1
α

))
.

The idea is to consider a uniform distribution on 1/α domain points and a target

concept that evaluates to zero on all of them. Now, if the sample S does not contain

all of those 1/α points, then the hypothesis that evaluates to 1 a “missed” point has

generalization error α but empirical error 0. Unless n = Ω( 1
α log( 1

α )), we are likely to miss

at least one such point.

That said, the class POINTX can be PAC learned using a sample of size O(1/α), e.g., by

choosing a random consistent hypothesis. It can be easily shown that the number of consis-
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tent hypotheses with large empirical error is at most 1/α, and hence, assuming that |X | is
big enough, the probability that a random consistent hypothesis has large generalization

error is small. In fact, Hanneke [58] showed that for every concept class C there exists

a PAC learner whose sample complexity grows as 1/α. As evident by Lemma 3.20, this

cannot be achieved by simply choosing an arbitrary consistent hypothesis.

Theorem 3.21 ([58]). Let C be a concept class. There exists an (α,β)-PAC learner for C with

sample size n, where

n = O

(
1
α

(
VC(C) + log

(
1
β

)))
.

3.4 Private Learning

In private learning, we would like to accomplish the same goal as in non-private learning,

while protecting the privacy of the input database.

Definition 3.22 (Private PAC Learning [67]). Let A be an algorithm that gets an input

S = {z1, . . . , zn}. Algorithm A is an (α,β,ε,δ)-PPAC learner for a concept class C with sample

size n using hypothesis class H if

Privacy. Algorithm A is (ε,δ)-differentially private (as in Definition 3.2);

Utility. Algorithm A is an (α,β)-PAC learner for C with sample size n using H (as in

Definition 3.11).

When δ = 0 (pure privacy) we omit it from the list of parameters.

Note that the utility requirement in the definition is an average-case requirement, as

the learner is only required to do well on typical samples (i.e., samples drawn i.i.d. from a

distribution D and correctly labeled by a target concept c ∈ C). In contrast, the privacy

requirement is a worst-case requirement, and Inequality (3.1) must hold for every pair of

neighboring databases (no matter how they were generated, even if they are not consistent

with any concept in C). This worst case requirement is important as otherwise wrong

assumptions about how the data is generated might lead to privacy breaches, which are

irreversible.
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3.5 Basic Differentially Private Mechanisms

3.5.1 The Laplace Mechanism

The most basic constructions of differentially private algorithms are via the Laplace

mechanism as follows.

Definition 3.23 (The Laplace Distribution). A random variable has probability distribution

Lap(b) if its probability density function is f (x) = 1
2b exp(− |x|b ), where x ∈ R.

Definition 3.24 (Sensitivity). The sensitivity of a function f : Xm→ Rn is the smallest k such

that for every neighboring D,D ′ ∈ Xm, we have ∥f (D)− f (D ′)∥1 ≤ k.

We use the term “k-sensitive function” to mean a function of sensitivity ≤ k.

Theorem 3.25 (The Laplace mechanism [44]). Let f : Xn → Rℓ be a k-sensitive function.

The mechanism A that on input D ∈ Xn adds independently generated noise with distribution

Lap(kε ) to each of the ℓ coordinates of f (D) preserves ε-differential privacy. Moreover,

Pr
[
∃i s.t. |Ai(D)− fi(D)| > ∆

]
≤ ℓ · exp

(
−ε∆

k

)
,

where Ai(D) and fi(D) are the ith coordinates of A(D) and f (D).

3.5.2 The Exponential Mechanism

We next describe the exponential mechanism of McSherry and Talwar [74]. Let X be a

domain and H a set of solutions. Given a database S ∈ X∗, the exponential mechanism

privately chooses a “good” solution h out of the possible set of solutions H . This “goodness”

is quantified using a quality function that matches solutions to scores.

Definition 3.26 (Quality function). A quality function is a function q : X∗ ×H → R that

maps a database S ∈ X∗ and a solution h ∈ H to a real number, identified as the score of the

solution h w.r.t. the database S.

Given a quality function q and a database S, the goal is to chooses a solution h approxi-

mately maximizing q(S,h). The exponential mechanism chooses a solution probabilistically,
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where the probability mass that is assigned to each solution h increases exponentially with

its quality q(S,h):

The Exponential Mechanism

Input: parameter ε, finite solution set H , database S ∈ Xm, and a 1-sensitive quality

function q.

1. Randomly choose h ∈H with probability exp(ε·q(S,h)/2)∑
f ∈H exp(ε·q(S,f )/2) .

2. Output h.

Proposition 3.27 (Properties of the exponential mechanism). (i) The exponential mechanism

is ε-differentially private. (ii) Let ê ≜ maxf ∈H {q(S,f )} and ∆ > 0. The exponential mechanism

outputs a solution h such that q(S,h) ≤ (ê −∆m) with probability at most |H | · exp(−ε∆m/2).

Kasiviswanathan et al. [67] showed in 2008 that the exponential mechanism can be used

as a generic private learner – when used with the quality function q(S,h) = |{i : h(xi) = yi}|
(i.e., the number of points on which h agrees with the sample S), the probability that the

exponential mechanism outputs a hypothesis h such that errorS(h) > minf ∈H {errorS(f )}+∆

is at most |H | ·exp(−ε∆m/2). This results in a generic private proper-learner for every finite

concept class C, with sample complexity Oα,β,ε(log |C|).

3.5.3 Stability and Privacy –Adist

We restate a simplified variant of algorithm Adist by Smith and Thakurta [86], which is

an instantiation of the Propose-Test-Release framework [43]. Let q : X∗ ×H → N be a

1-sensitive quality function over a domain X and a set of solutions H . Given a database

S ∈ X∗, the goal is to choose a solution h ∈ H maximizing q(S,h), under the assumption

that the optimal solution h scores much better than any other solution in H .
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AlgorithmAdist

Input: parameters ε,δ, a database S ∈ X∗, a 1-sensitive quality function q.

1. Let h1 , h2 be two highest score solutions in H , where q(S,h1) ≥ q(S,h2).

2. Let gap = q(S,h1)− q(S,h2) and gap∗ = gap + Lap(1
ε ).

3. If gap∗ < 1
ε log(1

δ ) then output ⊥ and halt.

4. Output h1.

Proposition 3.28 (Properties of Adist [86]). (i) Algorithm Adist is (ε,δ)-differentially private.

(ii) When given an input database S for which gap ≥ 1
ε log( 1

βδ ), algorithm Adist outputs h1

maximizing q(h,S) with probability at least (1− β).

3.6 Concentration Bounds

Let X1, . . . ,Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] = 1−p
for some 0 < p < 1. Clearly, E[

∑
iXi] = pn. Chernoff and Hoeffding bounds show that the

sum is concentrated around this expected value:

Pr
[∑

i
Xi > (1 + δ)pn

]
≤ exp

(
−pnδ2/3

)
for 0 < δ ≤ 1,

Pr
[∑

i
Xi < (1− δ)pn

]
≤ exp

(
−pnδ2/2

)
for 0 < δ < 1,

Pr
[∣∣∣∣∑

i
Xi − pn

∣∣∣∣ > δ
]
≤ 2exp

(
−2δ2/n

)
for δ ≥ 0.

The first two inequalities are known as the multiplicative Chernoff bounds [28], and the

last inequality is known as the Hoeffding bound [62].

33



Chapter 4

The Generalization Properties of

Differential Privacy

By now a rich literature has shown that many learning tasks of interest are compatible

with differential privacy. Indeed, one of the main goals in the following chapters is to

understand under which conditions we can construct private analogues for existing non-

private learning algorithms. In this chapter, however, we study a different connection

between differential privacy and learning; namely, that differential privacy implies learning.

Recall that the general task of computational learning is to identify properties of the

underlying distribution, rather than properties of a given sample. Roughly speaking,

we show that if a property of a given sample is identified by a differentially private

computation, then this property is in fact a property of the underlying distribution. In

other words – differential privacy guarantees generalization.

4.1 Main Results

Dwork et al. [40] showed that if a predicate h : X → {0,1} is the result of an (ε,δ)-

differentially private computation on a sample S containing i.i.d. elements from a dis-

tribution D, then the empirical average h(S) = 1
|S |

∑
x∈S h(x) and the expectation h(D) =

Ex∼D[h(x)] are close to within O(ε), except with probability at most O(δε). We strengthen

this connection and obtain the following theorem. As we will see, our connection between

differential privacy and generalization is optimal.

Theorem 4.1. Let ε ∈ (0,1/3), δ ∈ (0, ε/4), and n ≥ 1
ε2 log(2ε

δ ). Let A : Xn→ 2X be an (ε,δ)-

differentially private algorithm that operates on a database of size n and outputs a predicate
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h : X→ {0,1}. Let D be a distribution over X, let S be a database containing n i.i.d. elements

from D, and let h←A(S). Then

Pr
S∼D

h←A(S)

[
|h(S)− h(D)| ≥ 10ε

]
<
δ
ε

where h(S) is the empirical average of h on S, and h(D) is the expectation of h over D.

In words, if A is a differentially private algorithm operating on a database containing

n i.i.d. samples from D, then A cannot (with significant probability) identify a predicate

that behaves differently on the sample S and on D.

A matching bound. We show that Theorem 4.1 is tight, i.e., there exists an (ε,δ) differen-

tially private computation that achieves error ε with probability Θ(δ/ε).

4.1.1 Proof Outline

We begin with the following expectation bound. Consider an algorithm B operating on T

sub-databases S⃗ = (S1,S2, . . . ,ST ), where every St contains i.i.d. samples from D. Algorithm

B outputs a predicate h and an index 1 ≤ t ≤ T , and succeeds if h(D) is far from h(St). That

is, algorithm B tries to identify a sub-database St and a predicate h that behaves differently

on St and on D. We first show that no differentially private algorithm can succeed in this

task in expectation. That is, if B is differentially private, then the expectations ES⃗,A[h(D)]

and ES⃗,A[h(St)] are close.

This expectation bound for algorithms that operate on T sub-databases is then trans-

formed into a high probability bound on private algorithms that operate on a single

database: Assume the existence of a differentially private algorithm A that operates on a

database S containing i.i.d. samples from D and, with probability β, outputs a predicate h

s.t. h(S) is far from h(D). We can use A to construct an algorithm B operating on T ≈ 1
β

sub-databases that contradicts our expectation bound. Specifically, algorithm B applies

A on every sub-database, and obtains T predicates H = {h1, . . . ,hT }. Since T ≈ 1
β , w.h.p. at

least one of the ht’s behaves differently on St and on D, and B can identify such an ht ∈H
using standard differentially private tools. This will contradict our expectation bound.
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4.1.2 Additional Results

As we explained in Chapter 1, following Dwork et al., generalization bounds for differen-

tially private algorithms can be translated into upper bounds on the number of samples n

needed to accurately answer adaptively chosen statistical queries w.r.t. to the underlying

distribution. In this work we prove the first upper bounds on the number of samples

required to answer more general families of queries. These include arbitrary low-sensitivity

queries and an important class of optimization queries (alternatively, risk minimization

queries). Those results are omitted from the main body of this thesis; they appear in the

full version of this work [6].

4.2 From Expectation to High Probability Bounds

Given a predicate h : X→ {0,1}, a distribution D over X, and a sample S ∈ Xn, we denote

the expectation of h over D, and the empirical average of h on S as:

h(D) = E
x∼D

[h(x)] and h(S) =
1
n

∑
x∈S

h(x).

LetA be an (ε,δ)-differentially private algorithm that outputs a predicate, and consider

a database S sampled i.i.d. from some distribution D. Our goal is to show that if h←A(S),

then with high probability h(D) is close to the empirical average h(S), where the probability

is over the choice of S and the random coins of A. This is in spite of h being chosen based

on S.

Similarly to [40], we begin by showing that if h is the result of a differentially private

computation on a database S sampled i.i.d. from a distribution D, then h(S) and h(D)

are close in expectation. In order to later transform this expectation bound into a high

probability bound, we allow A to operate on several sub-databases S1, . . . ,ST and analyze

its (in)ability to identify one sub-database St and a predicate h that behaves differently on

St and on D.

Lemma 4.2 (Expectation bound). Let B : (Xn)T → 2X × {1,2, . . . ,T } be an (ε,δ)-differentially

private algorithm that operates on T sub-databases and outputs a predicate h : X→ {0,1} and
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an index t ∈ {1,2, . . . ,T }. Let D be a distribution over X, let S⃗ = (S1, . . . ,ST ) where every Sj is a

database containing n i.i.d. elements from D, and let (h, t)←B
(
S⃗
)
. Then

∣∣∣∣∣∣∣ E
S⃗∼D, (h,t)←B

(
S⃗
)[h(D)− h(St)

]∣∣∣∣∣∣∣ ≤ eε − 1 + T δ.

Proof. We denote the i-th element of the j-th sample of S⃗ as xj,i . That is, S⃗ = (S1, . . . ,ST ),

where each sample Sj = (xj,1, . . . ,xj,n). We can now calculate

E
S⃗∼D

 E
(h,t)←B

(
S⃗
) [h(St)]

 = E
S⃗∼D

 E
(h,t)←B

(
S⃗
)
[
E

i∼[n]

[
h(xt,i)

]]
= E

i∼[n]

 E
S⃗∼D

 E
(h,t)←B

(
S⃗
)[h(xt,i)

]


= E
i∼[n]

 E
S⃗∼D

 Pr
(h,t)←B

(
S⃗
)[h(xt,i) = 1

]


= E
i∼[n]

 E
S⃗∼D

 T∑
m=1

Pr
(h,t)←B

(
S⃗
)[h(xm,i) = 1 and t = m

]


= E
i∼[n]

 E
S⃗∼D

 E
z∼D

 T∑
m=1

Pr
(h,t)←B

(
S⃗
)[h(xm,i) = 1 and t = m

]

 . (4.1)

Given a multi-sample S⃗, a single element z ∈ X, and a pair of indices (m,i) ∈ [T ]× [n],

we define S⃗(m,i):z to be the same as S⃗, except that the i-th element of the m-th sample of S⃗

is replaced with z. Note that xm,i is still the element from S⃗ (and not from S⃗(m,i):z). With

this notation, by the differential privacy of B, we have that

(4.1) ≤ E
i∼[n]

 E
S⃗∼D

 E
z∼D

 T∑
m=1

eε · Pr
(h,t)←B

(
S⃗(m,i):z

)[h(xm,i) = 1 and t = m
]

+ δ





= T δ+ eε ·
T∑

m=1

E
i∼[n]

 E
S⃗∼D

 E
z∼D

 Pr
(h,t)←B

(
S⃗(m,i):z

)[h(xm,i) = 1 and t = m
]

 . (4.2)
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Now note that every S⃗(m,i):z above contains i.i.d. samples from D, and that xm,i is inde-

pendent of S⃗(m,i):z. The pairs (xm,i , S⃗
(m,i):z) and (z, S⃗) are, therefore, identically distributed.

Hence,

(4.2) = T δ+ eε ·
T∑

m=1

E
i∼[n]

 E
S⃗∼D

 E
z∼D

 Pr
(h,t)←B

(
S⃗
) [h(z) = 1 and t = m]





= T δ+ eε E
S⃗∼D

 E
z∼D

 Pr
(h,t)←B

(
S⃗
) [h(z) = 1]




= T δ+ eε E
S⃗∼D

 E
z∼D

 E
(h,t)←B

(
S⃗
) [h(z)]




= T δ+ eε E
S⃗∼D

 E
(h,t)←B

(
S⃗
)[ E

z∼D
[h(z)]

]
= T δ+ eε · E

S⃗∼D

 E
(h,t)←B

(
S⃗
) [h(D)]


≤ T δ+ eε − 1 + E

S⃗∼D

 E
(h,t)←B

(
S⃗
) [h(D)]

 .
(since h(D) ∈ [0,1], and since eε · y ≤ eε − 1 + y for every y ≤ 1 and ε ≥ 0.)

An identical argument shows that

E
S⃗∼D

(h,t)←B
(
S⃗
)
[
h(St)

]
≥ −T δ+ e−ε − 1 + E

S⃗∼D
(h,t)←B

(
S⃗
)
[
h(D)

]
.

We now transform the above expectation bound for private algorithms that operate on

T databases into a high probability bound for private algorithms that operate on a single

database. In fact, we will allow our private algorithm to output not 1 but k predicates, and

show that w.h.p. all of them behave similarly on the input sample and on the underlying

distribution. This relaxation will be helpful in Section 4.5, where we use the connection

between differential privacy and generalization to accurately answer adaptively chosen

queries.
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Theorem 4.3 (High probability bound). Let ε ∈ (0,1/3), δ ∈ (0, ε/4), k ∈ N, and n ≥
1
ε2 log(2εk

δ ). Let A : Xn → (2X)k be an (ε,δ)-differentially private algorithm that operates

on a database of size n and outputs k predicates h1, . . . ,hk : X→ {0,1}. Let D be a distribution

over X, let S be a database containing n i.i.d. elements from D, and let (h1, . . . ,hk)← A(S).

Then

Pr
S∼D

(h1,...,hk)←A(S)

[
max
1≤i≤k

|hi(S)− hi(D)| ≥ 10ε
]
<
δ
ε
.

Proof. Fix a distribution D on X. Assume towards contradiction that with probability at

least δ/ε algorithm A outputs k predicates h1, . . . ,hk s.t. maxi |hi(S)− hi(D)| ≥ 10ε. We now

useA andD to construct the following algorithm B that contradicts Lemma 4.2. We remark

that algorithm B “knows” the distribution D. This will still lead to a contradiction because

the expectation bound of Lemma 4.2 holds for every differentially private algorithm and

every underlying distribution.

Algorithm B

Input: T databases of size n each: S⃗ = (S1, . . . ,ST ), where T ≜ ⌊ε/δ⌋.

1. Set F = ∅.

2. For t = 1, ...,T :

(a) Let (ht1, . . . ,h
t
k)←A(St).

(b) Set F = F ∪
{(
ht1, t

)
, . . . ,

(
htk , t

)
,
(
ht1, t

)
, . . . ,

(
htk , t

)}
, where a predicate h is defined

by h(x) = 1− h(x).

3. Sample (h∗, t∗) from F with probability proportional to exp
(
εn
2 (h∗(St∗)− h∗(D))

)
.

Output: (h∗, t∗).

Observe that B only accesses its input through A (which is (ε,δ)-differentially pri-

vate) and the exponential mechanism (which is (ε,0)-differentially private). Thus, by

composition and post-processing, B is (2ε,δ)-differentially private.

Now consider applying B on databases S⃗ = (S1, . . . ,ST ) containing i.i.d. samples from

D. By our assumption on A, for every t we have that max1≤i≤k
∣∣∣hti (St)− hti (D)

∣∣∣ ≥ 10ε with
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probability at least δ/ε. By our choice of T = ⌊ε/δ⌋, we therefore get

Pr
S⃗∼D
B
(
S⃗
)
max
t∈[T ]
i∈[k]

∣∣∣hti (St)− hti (D)
∣∣∣ ≥ 10ε

 ≥ 1−
(
1− δ

ε

)T
≥ 1

2
.

The probability is taken over the random choice of the examples in S⃗ according to D and

the generation of the predicates hti according to B
(
S⃗
)
. Thus, by Markov’s inequality,

E
S⃗∼D
B
(
S⃗
)
max
t∈[T ]
i∈[k]

∣∣∣hti (St)− hti (D)
∣∣∣
 ≥ 5ε.

Recall that the set F (constructed in step 2 of algorithm B) contains predicates and their

negations, and hence,

E
S⃗∼D
B
(
S⃗
)
[

max
(h,t)∈F

{h(St)− h(D)}
]

= E
S⃗∼D
B
(
S⃗
)
max
t∈[T ]
i∈[k]

∣∣∣hti (St)− hti (D)
∣∣∣
 ≥ 5ε. (4.3)

So, in expectation, the set F contains a pair (h, t) with large difference h(St)− h(D). In

order to contradict the expectation bound of Lemma 4.2, we need to show that this is also

the case for the pair (h∗, t∗), which is sampled from F using the exponential mechanism. To

that end, we now use the following technical claim, stating that the expected quality of a

solution sampled using the exponential mechanism is high.

Claim 4.4. Let F be a finite set, f : F→ R a function, and η > 0. Define a random variable Y on

F by Pr[Y = y] = exp(ηf (y))/C, where C =
∑

y∈F exp(ηf (y)). Then E [f (Y )] ≥maxy∈F f (y)−
1
η log |F|.

We can apply Claim 4.4 with f (h, t) = h(St)− h(D) and η = εn
2 to get

E
(h∗,t∗)∈RF

[
h∗(St∗)− h∗(D)

]
≥ max

(h,t)∈F
{h(St)− h(D)} − 2

εn
log(2T k). (4.4)
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Taking the expectation also over S⃗ ∼ D and B(S⃗) we get that

E
S⃗∼D
B
(
S⃗
)
[
h∗(St∗)− h∗(D)

]
≥ E

S⃗∼D
B
(
S⃗
)
[

max
(h,t)∈F

{h(St)− h(D)}
]
− 2
εn

log(2T k)

≥ 5ε − 2
εn

log(2εk/δ).

This contradicts Lemma 4.2 whenever n ≥ 1
ε2 log(2εk/δ).

It remains to prove Claim 4.4.

Proof of Claim 4.4. We have

f (x) =
1
η

(
logC + logPr[X = x]

)
.

Thus

E [f (X)] =
∑
x∈F

Pr[X = x]f (x)

=
∑
x∈F

Pr[X = x]
1
η

(
logC + logPr[X = x]

)
=

1
η

(logC −H(X)) ,

where H(X) is the Shannon entropy of the distribution of X. In particular,

H(X) ≤ log |support(X)| = log |F|,

as the uniform distribution maximizes entropy. Moreover, C ≥ maxx∈F eηf (x), whence
1
η logC ≥maxx∈F f (x). Claim 4.4 now follows from these two inequalities.

This completes the proof of Theorem 4.3.
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4.3 Tightness of Our Results

In the previous section we showed that (ε,δ)-differential privacy guarantees O(ε) accuracy

with probability 1−O(δ/ε). It would be tempting to guess that (ε,δ)-differential privacy

should guarantee O(ε) accuracy with probability 1−O(δ). As we will now see, this is not

the case, and our results are tight.

Theorem 4.5. Let U be the uniform distribution over [0,1]. For every α > δ there exists a (0,δ)-

differentially private algorithm A such that the following holds. If S is a database containing

n ≥ 1
α i.i.d. samples from U , and if h←A(S) then

Pr[h(S) ≥ h(U ) +α] ≥ δ
2α

.

Proof. Consider the following simple algorithm, denoted as B. On input a database S,

output S with probability δ, and otherwise output the empty database. Clearly, B is

(0,δ)-differentially private. Now construct the following algorithm A.

AlgorithmA

Input: 1
α databases of size αn each: S⃗ = (S1, . . . ,S1/α).

1. For 1 ≤ i ≤ 1
α let Ŝi = B(Si).

2. Return h : [0,1]→ {0,1} where h(x) = 1 iff ∃i s.t. x ∈ Ŝi .

As B is (0,δ)-differentially private, and as A only applies B on disjoint databases, we

get that A is also (0,δ)-differentially private.

Suppose S⃗ = (S1, . . . ,S1/α) contains i.i.d. samples from U , and let h←A(S⃗). Observe

that h evaluates to 1 only on a finite number of points from [0,1], and hence, we have that

h(U ) = Ex∼U [h(x)] = 0. Next note that h(S⃗) = α · |{i : Ŝi = Si}|. Therefore, if there exists an i

s.t. Ŝi = Si then h(S⃗) ≥ h(U ) +α. The probability that this is not the case is at most

(1− δ)1/α ≤ e−δ/α ≤ 1− δ
2α

,

and thus, with probability at least δ
2α , algorithm A outputs a predicate h s.t. h(S) ≥

h(U ) +α.
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In particular, using Theorem 4.5 with α = ε shows that the confidence parameter in

Theorem 4.3 is tight.

4.4 Beyond Binary Functions

Recall that the task of learning algorithms is to predict the classification of unseen exam-

ples. Our work, as well as most of the research on private learning, is mainly focused on

binary classification, where examples are labeled by either 0 or 1. In practice, however,

there might be more than two possible labels. For example, in medical diagnosis, we might

be interested in mapping patients to one out of a hundred possible diseases.

In this section we show that the generalization properties of differential privacy are

not limited to binary functions, and extend to multi-class classification:

Definition 4.6. Let X be a data universe, let Y be a class of possible labels, and let P be a

distribution over X ×Y . The generalization error of a hypothesis h : X→ Y w.r.t. P is defined

by errorP (h) = Pr(x,y)∼P [h(x) , y].

The empirical error of a hypothesis h : X→ Y on a labeled sample S = ((x1, y1), . . . , (xn, yn)) ∈
(X ×Y )n is errorS(h) = 1

n |{i : h(xi) , yi}|.

We now restate Theorem 4.3 for algorithms that output functions mapping X to Y .

Theorem 4.7. Let ε ∈ (0,1/3), δ ∈ (0, ε/4), and n ≥ 1
ε2 log(2ε

δ ). Let A : (X × Y )n→ Y X be an

(ε,δ)-differentially private algorithm that operates on a labeled database of size n and outputs a

function h : X→ Y . Let P be a distribution over X ×Y , let S be a database containing n i.i.d.

elements from P , and let h←A(S). Then

Pr
S∼P

h←A(S)

[|errorS(h)− errorP (h)| ≥ 10ε] <
δ
ε
.

Observe that since algorithmA in the above theorem outputs a non-binary function, we

cannot apply Theorem 4.3 directly to obtain generalization guarantees for it. We address

this by post-processing A’s output, and transforming the returned hypothesis h into the

error function associated with it, which is a binary function. If we assume that h is accurate

on the sample but not on the underlying distribution, then the error function would be a
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privately computed binary function, that behaves very differently on the sample and the

distribution. This will contradict Theorem 4.3

Proof of Theorem 4.7. Fix a distribution P on X × Y . Assume towards contradiction that

with probability at least δ/ε algorithm A outputs a predicate h s.t. |errorS(h)− errorP (h)| ≥
10ε. Consider the following algorithm, denoted as B. Given a labeled database S ∈ (X×Y )n,

apply A(S) to obtain a hypothesis h : X → Y , and output f : (X × Y ) → {0,1} where

f (x,y) = 1 iff h(x) , y. Observe that B only post-processes the output of A, and thus, B is

(ε,δ)-differentially private. Now consider applying B on a database S ∈ (X ×Y )n sampled

i.i.d. from P . By our assumption on A, with probability at least δ/ε we have that

10ε ≤ |errorS(h)− errorP (h)|

=

∣∣∣∣∣∣∣1n
n∑
i=1

1[h(xi) , yi]− Pr
(x,y)∼P

[h(x) , y]

∣∣∣∣∣∣∣
= |f (S)− f (P )| .

This contradicts Theorem 4.3.

4.5 Answering Adaptively Chosen Statistical Queries

Following Dwork et al. [40], our high probability generalization bound (Theorem 4.3)

yields new upper bounds on the number of samples n needed to accurately answer

adaptively chosen statistical queries w.r.t. to the underlying distribution. We now give the

details.

4.5.1 Definitions

Given a distribution D over a data universe X, or a sample S = (x1, . . . ,xn) ∈ Xn, we would

like to answer statistical queries about D or about S. These queries are specified by a

function q : X→ {0,1}, and the error of an answer a to a statistical query q with respect to

D or S is defined to be

errS (q,a) = a− q(S) and errD (q,a) = a− q(D).

44



Our goal is to design a mechanismM that answers queries onD using only independent

samples x1, . . . ,xn from D. Our focus is the case where the queries are chosen adaptively

and adversarially.

Specifically,M is a stateful algorithm that holds a collection of samples x1, . . . ,xn ∈ X,

takes a statistical query q as input, and returns an answer a. We require that when x1, . . . ,xn

are independent samples from D, the answer a is close to q(D). Moreover we require that

this condition holds for every query in an adaptively chosen sequence q1, . . . , qk. Formally,

we define an accuracy game Accn,k[M,A] between a mechanismM and a stateful data

analyst A in Figure 4.1.

A chooses a distribution D over X.
Sample x1, . . . ,xn i.i.d. from D, and let S = (x1, . . . ,xn). (Note that A does not know S.)

For j = 1, . . . , k
A outputs a statistical query qj : X→ {0,1}.
M(S,qj) outputs aj .
(As A andM are stateful, qj and aj may depend on the history q1, a1, . . . , qj−1, aj−1.)

Figure 4.1: The Accuracy Game Accn,k[M,A].

Definition 4.8 (Distribution Accuracy). A mechanismM is (α,β)-accurate with respect to

the underlying distribution for k adaptively chosen statistical queries given n samples in

X if for every adversary A,

Pr
Accn,k[M,A]

[
max
j∈[k]

∣∣∣∣errD
(
qj , aj

)∣∣∣∣ ≤ α

]
≥ 1− β.

We will also use a definition of accuracy relative to the sample given to the mechanism,

described in Figure 4.2.
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A chooses S = (x1, . . . ,xn) ∈ Xn.

For j = 1, . . . , k

A outputs a statistical query qj .

M(S,qj) outputs aj .

(qj and aj may depend on the history q1, a1, . . . , qj−1, aj−1 and on S.)

Figure 4.2: The Sample Accuracy Game SampAccn,k[M,A].

Definition 4.9 (Sample Accuracy). A mechanism M is (α,β)-accurate with respect to

samples of size n from X for k adaptively chosen statistical queries if for every adversary A,

Pr
SampAccn,k[M,A]

[
max
j∈[k]

∣∣∣∣errS
(
qj , aj

)∣∣∣∣ ≤ α

]
≥ 1− β.

4.5.2 From Differential Privacy and Sample-Accuracy to Distribution-

Accuracy

LetM be an (ε,δ)-differentially private mechanism that is (α,β)-accurate with respect to

its sample for k adaptively chosen statistical queries. Assume thatM holds a database S

sampled i.i.d. from a distribution D, and consider an interaction betweenM and a data

analyst A. For k rounds, the analyst specifies a statistical query qi and receives an answer

ai . By the sample-accuracy ofM, with probability (1− β), for every i we have that

|ai − qi(S)| ≤ α.

Dwork et al. [40] observed that as the analyst only interacts with S throughM, the analyst

A can be described as a post-processing ofM’s answers. As differential privacy is immune

to post-processing, the queries chosen by A are the result of an (ε,δ)-differentially private

computation on S. We can therefore think of the mechanismM and the analyst A as a

single differentially private algorithm A that operates on a random sample S and outputs

k queries.

We can now apply our results from Section 4.2 to claim that w.h.p. the empirical

average of those queries must be close to their expectation. Specifically, by Theorem 4.3,
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with probability (1− δ/ε) for every query qi it holds that

|qi(S)− qi(D)| ≤O(ε).

Therefore, with probability (1− β − δ/ε), for every i we have that |ai − qi(D)| ≤O(α + ε) by

the triangle inequality. We get the following corollary:

Corollary 4.10. Let M be an (ε,δ)-differentially private mechanism that is (α,β)-accurate

with respect to a sample of size n for k adaptively chosen statistical queries. ThenM is also

(α + 10ε,β + δ/ε)-accurate with respect to the population, provided that n ≥ 1
ε2 log(2εk

δ ).

We now instantiate known differentially private mechanisms with the above corollary

to obtain mechanisms that provide strong error guarantees with high probability for

adaptively chosen statistical queries.

Corollary 4.11 (Theorem 4.3 and [44, 84]). There is a mechanismM that is (α,β)-accurate

with respect to the underlying distribution for k adaptively chosen statistical queries given n

samples from X for

n ≥O


√
k · loglogk · log3/2

(
1
αβ

)
α2

 .
The mechanism runs in time poly(n, log |X |, log(1/β)) per query.

Corollary 4.12 (Theorem 4.3 and [59]). There is a mechanismM that is (α,β)-accurate with

respect to the underlying distribution for k adaptively chosen statistical queries given n samples

from X for

n = O


√

log |X | · logk · log3/2
(

1
αβ

)
α3

 .
The mechanism runs in time poly(n, |X |) per query.
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Chapter 5

Characterizing the Sample Complexity of

Pure-Private Learners

We give a combinatorial characterization of the sample size sufficient and necessary to

learn a class of concepts under pure-differential privacy. This characterization is analogous

to the well-known characterization of the sample complexity of non-private learning in

terms of the VC dimension of the concept class. We introduce the notion of probabilistic

representation of a concept class, and our new complexity measure RepDim corresponds to

the size of the smallest probabilistic representation of the concept class.

We show that any pure-private learning algorithm for a concept class C with sample

complexity n implies RepDim(C) = O(n), and that there exists a private learning algorithm

with sample complexity n = O(RepDim(C)).

5.1 Main Results

In the initial work on private learning, Kasiviswanathan et al. [67] presented a generic

construction for learning a concept class C under pure-differential privacy using sample

complexity of O(log |C|).
Beimel et al. [8] observed that the sample complexity can be reduced by considering

the smallest hypothesis class H that represents C, in the scene that for every target concept

c ∈ C and every distribution D, there exists a hypothesis h ∈ H with small errorD(c,h).

Observe that |H | ≤ |C| as, in particular, the class C represents itself. Using the generic

construction of Kasiviswanathan et al. to choose a hypothesis out of H (instead of C), the

sample complexity is improved to O(log |H |). While for some classes this can dramatically

improve the sample complexity, Beimel et al. showed that this technique is not optimal,
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and that there are concept classes for which it is possible to further reduce the sample

complexity using other techniques.

We make an additional step in improving the sample complexity by considering a

probabilistic representation of a concept class C. Instead of one collection H representing C,

we consider a list of collections H1, . . . ,Hr such that for every c ∈ C and every distribution

on the examples, if we sample a collection Hi from the list, then with high probability

there is a hypothesis h ∈Hi that is close to c. To privately learn C, the learning algorithm

first samples i ∈ {1, . . . , r} and then uses the generic construction of Kasiviswanathan et al.

to select a hypothesis from Hi . This reduces the sample complexity to O(maxi log |Hi |); the

size of the probabilistic representation is hence defined to be maxi log |Hi |.
One can ask if there are pure-private learning algorithms with smaller sample com-

plexity than the size of the smallest probabilistic representation. We show that the answer

is no — the size of the smallest probabilistic representation is a lower bound on the

sample complexity. Thus, the size of the smallest probabilistic representation of a class

C, which we call the representation dimension and denote by RepDim(C), characterizes

(up to constants) the sample size necessary and sufficient for learning the class C under

pure-differential privacy.

As a by-product of our characterization we obtain a pure-private improper-learning

algorithm for point functions with constant sample complexity, matching a different

private algorithm presented in [8]. Our new algorithm offers some improvement in the

sample complexity compared to the algorithm of [8] when considering the learning and

privacy parameters. Furthermore, our algorithm can be made computationally efficient

without making any computational hardness assumptions, while the efficient version in [8]

assumes the existence of one-way functions.

Additional Results. The notion of probabilistic representation applies not only to private

learning, but also to optimization problems. We consider a scenario where there is a

domain X, a database S of n records, each taken from the domain X, a set of solutions

F, and a quality function q : X∗ ×F→ [0,1] that we wish to maximize. If the exponential

mechanism is used for (approximately) solving the problem, then the size of the database

should be Ω(ln |F|) in order to achieve a reasonable approximation. Using our notions of a

representation of F and of a probabilistic representation of F, one can reduce the size of
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the minimal database without paying too much in the quality of the solution. Interestingly,

a similar notion to representation, called “solution list algorithms”, was considered in [9]

for constructing secure protocols for search problems while leaking only a few bits on the

input. Curiously, their notion of leakage is very different from that of differential privacy.

See the full version of this work for more details [10].

5.2 The Sample Complexity of Pure-Private Learners

In this section we present a combinatorial measure of a concept class C that characterizes

the sample complexity necessary and sufficient for privately learning C. The measure is

a probabilistic representation of the class C. We start with the notation of deterministic

representation from [8].

Definition 5.1 ([8]). Let C be a concept class over a domain X. A hypothesis class H is an

α-representation for C if for every c ∈ C and every distribution D on X there exists a hypothesis

h ∈H such that errorD(c,h) ≤ α.

Example 5.2 (POINTX). Recall that for every x ∈ X the class POINTX contains the concept

cx : X → {0,1} where cx(y) = 1 iff x = y. In [8] it was shown that for α < 1/2, every α-

representation for POINTX must be of cardinality at least log |X |, and that an α-representation

H for POINTX exists where |H | = O
(

1
α2 log |X |

)
.

The above representation can be used for non-private learning, by taking a big enough

sample and finding a hypothesis h ∈H minimizing the empirical error. For private learning

it was shown in [8] that a sample of size Oα,β,ε(log |H |) suffices, with a learner that employs

the exponential mechanism to choose a hypothesis from H .

Definition 5.3. For a hypothesis class H we denote size(H) = ln |H |. We define the Deterministic

Representation Dimension of a concept class C as

DRepDim(C) = min
{

size(H) : H is a
1
4

-representation for C
}
.

Remark 5.4. Choosing 1
4 is arbitrary; we could have chosen any (smaller than 1

2) constant.
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Example 5.5. By the results of [8], stated in the previous example, DRepDim(POINTX) =

θ(loglog |X |).

We are now ready to present the notion of a probabilistic representation. The idea

behind this notion is that we have a list of hypothesis classes, such that for every concept c

and distributionD, if we sample a hypothesis class from the list, then with high probability

it contains a hypothesis that is close to c.

Definition 5.6. Let C be a concept class over a domain X. Let P be a distribution over

{1,2, . . . , r}, and let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes (every Hi ∈H is a set

of boolean functions). We say that (H ,P ) is an (α,β)-probabilistic representation for C if for

every c ∈ C and every distribution D on X:

Pr
i∼P

[∃h ∈Hi s.t. errorD(c,h) ≤ α] ≥ 1− β.

The probability is over randomly choosing a set Hi ∈H (according to P ).

Remark 5.7. As we will see in Section 5.2.1, the existence of such a probabilistic representation

(H ,P ) for a concept class C implies the existence of a private learning algorithm for C with

sample complexity that depends on the cardinality of the hypothesis classes Hi ∈H . The sample

complexity will not depend on r = |H |.

Example 5.8 (POINTX). In Section 5.3 we construct for every α and every β a pair (H ,P ) that

(α,β)-probabilistically represents the class POINTX , where H contains all the sets of at most
4
α ln(1/β) boolean functions.

Definition 5.9. Let H = {H1,H2, . . . ,Hr} be a family of hypothesis classes. We denote |H | = r,

and size(H ) = max{ ln |Hi | : Hi ∈H }. We define the Representation Dimension of a concept

class C as

RepDim(C) = min

 size(H ) :

∃P s.t. (H ,P ) is a

(1
4 ,

1
4 )-probabilistic

representation for C

 .
Remark 5.10. Choosing α = β = 1

4 is arbitrary; we could have chosen any two (smaller than 1
2)

constants.
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Example 5.11 (POINTX). The size of the probabilistic representation mentioned in Example 5.8

is ln( 4
α ln(1/β)). Placing α = β = 1

4 , we see that the Representation Dimension of POINTX is

constant.

5.2.1 Equivalence of Probabilistic Representation and Private Learning

We now show that RepDim(C) characterizes the sample complexity of private learners.

We start by showing in Lemma 5.12 that an (α,β)-probabilistic representation of C implies

a private learning algorithm whose sample complexity is the size of the representation.

We then show in Lemma 5.15 that if there is a private learning algorithm with sample

complexity n, then there is probabilistic representation of C of size O(n); this lemma

implies that RepDim(C) is a lower bound on the sample complexity. Recall that RepDim(C)

is the size of the smallest probabilistic representation for α = β = 1/4. Thus, to complete

the proof we show in Lemma 5.17 that a probabilistic representation with α = β = 1/4

implies a probabilistic representation for arbitrary α and β.

Lemma 5.12. If there exists a pair (H ,P ) that (α,β)-probabilistically represents a class C,

then for every ε there exists an algorithm A that (6α,4β,ε)-PPAC learns C with a sample size

n = O
(

1
αε (size(H ) + ln( 1

β ))
)
.

Proof. Let (H ,P ) be an (α,β)-probabilistic representation for the class C, and consider

the following algorithm A:

AlgorithmA
Inputs: Database S = (xi , yi)

n
i=1, and a privacy parameter ε.

1. Randomly choose Hi ∈H according to P .

2. Choose h ∈ Hi using the exponential mechanism with privacy parameter ε and

quality function q(S,h) = |{i : h(xi) = yi}|.

By the properties of the exponential mechanism, A is ε-differentially private. We will

show that with sample size n = O
(

1
αε (size(H ) + ln( 1

β ))
)
, algorithm A is a (6α,4β)-PAC

learner for C. Fix a target concept c ∈ C and a distribution D, and define the following 3

good events:
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E1 Hi chosen in step 1 contains at least one hypothesis h s.t. errorS(h) ≤ 2α.

E2 For every h ∈Hi s.t. errorS(h) ≤ 3α, it holds that errorD(c,h) ≤ 6α.

E3 The exponential mechanism chooses an h such that errorS(h) ≤ α+minf ∈Hi
{errorS(f )}.

We first show that if those 3 good events happen, algorithm A returns a 6α-good

hypothesis. Event E1 ensures the existence of a hypothesis f ∈Hi s.t. errorS(f ) ≤ 2α. Thus,

event E1∩E3 ensures algorithmA chooses (using the exponential mechanism) a hypothesis

h ∈Hi s.t. errorS(h) ≤ 3α. Event E2 ensures, therefore, that this h satisfies errorD(c,h) ≤ 6α.

We will now show that these 3 events happen with high probability. As (H ,P ) is an

(α,β)-probabilistic representation for the class C, the chosen Hi contains a hypothesis h

s.t. errorD(c,h) ≤ α with probability at least 1− β; by the Chernoff bound with probability

at least 1− exp(−nα/3) this hypothesis has empirical error at most 2α. Event E1 happens

with probability at least (1 − β)(1 − exp(−nα/3)) > 1 − (β + exp(−nα/3)), which is at least

(1− 2β) for n ≥ 3
α ln(1/β).

Using the Chernoff bound, the probability that a hypothesis h s.t. errorD(c,h) > 6α has

empirical error ≤ 3α is less than exp(−nα3/4). Using the union bound, the probability

that there is such a hypothesis in Hi is at most |Hi | · exp(−nα3/4). Therefore, Pr[E2] ≥
1− |Hi | · exp(−nα3/4). For n ≥ 4

3α (ln( |Hi |
β )), this probability is at least (1− β).

The exponential mechanism ensures that the probability of event E3 is at least 1− |Hi | ·
exp(−εαn/2) (see Section 3.5.2), which is at least (1− β) for n ≥ 2

αε ln( |Hi |
β ).

All in all, by setting n = 3
αε (size(H ) + ln( 1

β )) we ensure that the probability of A failing

to output a 6α-good hypothesis is at most 4β.

We will demonstrate the above lemma with two examples:

Example 5.13 (Efficient learner for POINTX). As described in Example 5.8, there exists an

(H ,P ) that (α/6,β/4)-probabilistically represents the class POINTX , where size(H ) = Oα,β,ε(1).

By Lemma 5.12, there exists an algorithm that (α,β,ε)-PPAC learns C with sample size m =

Oα,β,ε(1).

The existence of an algorithm with sample complexity O(1) was already proven in [8].

Moreover, assuming the existence of oneway functions, their learner is efficient. Our construction

yields an efficient learner, without assumptions. To see this, consider again algorithmA presented
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in the above proof, and note that as size(H ) is constant, step 2 could be done in constant time.

Step 1 can be done efficiently as we can efficiently sample a set Hi ∈P H . In Claim 5.19 we

initially construct a probabilistic representation in which the description of every hypothesis

is exponential in d. The representation is then revised using pairwise independence to yield a

representation in which every hypothesis h has a short description, and given x the value h(x)

can be computed efficiently.

The next lemma shows that a private learning algorithm implies a probabilistic rep-

resentation. This lemma can be used to lower bound the sample complexity of private

learners.

Lemma 5.14. If there exists an algorithm A that (α, 1
2 , ε)-PPAC learns a concept class C with a

sample size n, then there exists a pair (H ,P ) that (α,1/4)-probabilistically represents the class

C such that size(H ) ≤ nε+ 2.

Proof. Let A be an (α, 1
2 , ε)-PPAC learner for a class C using hypothesis class F whose

sample size is n. For a target concept c ∈ C and a distributionD, we define G as the set of all

hypotheses h ∈ F such that errorD(c,h) ≤ α. Fix some c ∈ C and a distribution D. AsA is an

(α, 1
2 )-PAC learner, PrD,A [A(S) ∈ G] ≥ 1

2 , where the probability is over A’s randomness and

over sampling the examples in S (according to D). Therefore, there exists a database S of

n samples such that PrA [A(S) ∈ G] ≥ 1
2 , where the probability is only over the randomness

of A. As A is ε-differentially private, PrA
[
A(⃗0) ∈ G

]
≥ e−nε ·PrA [A(S) ∈ G] ≥ 1

2e
−nε, where

0⃗ is a database with n zeros.1 That is, PrA
[
A(⃗0) < G

]
≤ 1 − 1

2e
−nε. Now, consider a set H

containing the outcomes of 2ln(4)enε independent executions of A(⃗0). The probability

that H does not contain an α-good hypothesis is at most (1 − 1
2e
−nε)2ln(4)enε ≤ 1

4 . Thus,

H = {H ⊆ F : |H | ≤ 2ln(4)enε}, and P , the distribution induced by A(⃗0), are an (α,1/4)-

probabilistic representation for class C. It follows that size(H ) = max{ ln |H | : H ∈H } =
ln(2ln(4)) +nε < 2 +nε.

The above lemma yields a lower bound of Ω
(

1
ε RepDim(C)

)
on the sample complexity

of private learners for a concept class C. To see this, fix α ≤ 1
4 and let A be an (α, 1

2 , ε)-

PPAC learner for C with sample size n. By the above lemma, there exists a pair (H ,P )

1Choosing 0⃗ is arbitrary; we could have chosen any database.
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that (α,1/4)-probabilistically represents C s.t. size(H ) ≤ 2 +nε. Therefore, by definition,

RepDim(C) ≤ 2 +nε. Thus, n ≥ 1
ε (RepDim(C)− 2) = Ω

(
1
ε RepDim(C)

)
.

In order to refine this lower bound (and incorporate α in it), we will need a somewhat

stronger version of this lemma:

Lemma 5.15. Let α ≤ 1/4. If there exists an algorithm A that (α, 1
2 , ε)-PPAC learns a concept

class C with a sample size n, then there exists a pair (H ,P ) that (1/4,1/4)-probabilistically

represents the class C such that size(H ) ≤ nεα + 3.

Proof. Let A be an (α, 1
2 , ε)-PPAC learner for the class C using hypothesis class F whose

sample size is n. Without loss of generality, we can assume that n ≥ 3ln(4)
4α (since the learner

can ignore part of the sample). For a target concept c ∈ C and a distribution D, we define

Gα
D = {h ∈ F : errorD(c,h) ≤ α}.

Fix some c ∈ C and a distribution D over X, and define the following distribution D̃ on X:2

Pr
D̃

[x] =

1− 4α + 4α ·PrD[0], x = 0.

4α ·PrD[x], x , 0.

Note that for every x ∈ X,

Pr
D̃

[x] ≥ 4α ·Pr
D

[x]. (5.1)

As A is an (α, 1
2 )-PAC learner, it holds that

Pr
D̃,A

[
A(S) ∈ Gα

D̃

]
≥ 1

2
,

where the probability is over A’s randomness and over sampling the examples in S

(according to D̃). In addition, by inequality (5.1), every hypothesis h with errorD(c,h) > 1/4

has error strictly greater than α under D̃:

errorD̃(c,h) ≥ 4α · errorD(c,h) > α.

2We assume that 0 ∈ X. This choice is arbitrary, and 0 could be replaced with any element of X.
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So, every α-good hypothesis for c and D̃ is a 1
4-good hypothesis for c and D. That is,

Gα
D̃
⊆ G1/4

D . Therefore, PrD̃,A
[
A(S) ∈ G1/4

D

]
≥ 1

2 .

We say that a database S of n labeled examples is good if the unlabeled example 0

appears in S at least (1 − 8α)n times. Let S be a database constructed by taking n i.i.d.

samples from D̃, labeled by c. By the Chernoff bound, S is good with probability at least

1− exp(−4αn/3). Hence,

Pr
D̃,A

[
(A(S) ∈ G1/4

D )∧ (S is good)
]
≥ 1

2
− exp(−4αn/3) ≥ 1

4
.

Therefore, there exists a database Sgood of n samples that contains the unlabeled

example 0 at least (1− 8α)n times, and PrA
[
A(Sgood) ∈ G1/4

D

]
≥ 1

4 , where the probability is

only over the randomness of A. All of the examples in Sgood (including the example 0) are

labeled by c.

For σ ∈ {0,1}, denote by 0⃗σ a database containing n copies of the example 0 labeled

as σ . As A is ε-differentially private, and as the target concept c labels the example 0 by

either 0 or 1, for at least one σ ∈ {0,1} it holds that

Pr
A

[A(⃗0σ ) ∈ G1/4
D ] ≥ exp(−8αεn) ·Pr

A

[
A(Sgood) ∈ G1/4

D

]
≥ exp(−8αεn) · 1/4. (5.2)

That is, PrA[A(⃗0σ ) < G1/4
D ] ≤ 1− 1

4e
−8αεn. Now, consider a set H containing the outcomes of

4ln(4)e8αεn independent executions ofA(⃗00), and the outcomes of 4ln(4)e8αεn independent

executions ofA(⃗01). The probability that H does not contain a 1
4-good hypothesis for c and

D is at most (1− 1
4e
−8αεn)4ln(4)e8αεn ≤ 1

4 . Thus, H =
{
H ⊆ F : |H | ≤ 2 · 4ln(4)e8αεn

}
, and P ,

the distribution induced by A(⃗00) and A(⃗01), are a (1/4,1/4)-probabilistic representation

for the class C. Note that the value c(0) is unknown, and can be either 0 or 1. Therefore,

the construction uses the two possible values (one of them correct).

It holds that size(H ) = max{ ln |H | : H ∈H } = ln(8ln(4)) + 8αεn ≤ nεα + 3.

Lemma 5.17 below shows how to construct a probabilistic representation for an ar-

bitrary α and β from a probabilistic representation with α = β = 1/4; in other words

we boost α and β. The proof of this lemma is combinatorial. It allows us to start with
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a private learning algorithm with constant α and β, move to a representation, use the

combinatorial boosting, and move back to a private algorithm with small α and β. This

should be contrasted with the private boosting of [48], which is algorithmic and more

complicated (however, the algorithm of Dwork et al. [48] is computationally efficient).

We first show how to construct a probabilistic representation for arbitrary β from a

probabilistic representation with β = 1/4.

Claim 5.16. For every concept class C and for every β, there exists a pair (H ,P ) that (1/4,β)-

probabilistically represents C where size(H ) ≤ RepDim(C) + lnln(1/β).

Proof. Let β < 1/4, and let (H 0,P 0) be a (1
4 ,

1
4 )-probabilistic representation for C with

size(H 0) = RepDim(C) ≜ k0 (that is, for every H0
i ∈H 0 it holds that |H0

i | ≤ ek0). Denote

H 0 = {H0
1 ,H

0
2 , . . . ,H

0
r }, and consider the following family of hypothesis classes:

H 1 =
{
H0

i1
∪ · · · ∪H0

iln(1/β)
: 1 ≤ i1 ≤ · · · ≤ iln(1/β) ≤ r

}
.

Note that for every H1
i ∈ H 1 it holds that |H1

i | ≤ ln(1/β)ek0 ; so, size(H 1) ≜ k1 ≤ k0 +

lnln(1/β). We will now show an appropriate distribution P 1 on H 1 s.t. (H 1,P 1) is a

(1
4 ,β)-probabilistic representation for C. To this end, consider the following process for

randomly choosing an H1 ∈H 1:

1. Denote M = ln(1/β)

2. For i = 1, . . . ,M :

Randomly choose H0
i ∈H 0 according to P 0.

3. Return H1 =
⋃M

i=1H
0
i .

The above process induces a distribution on H 1, denoted as P 1. As H 0 is a (1
4 ,

1
4 )-

probabilistic representation for C, we have that

Pr
P 1

[
∄h ∈H1 s.t. errorD(c,h) ≤ 1/4

]
=

M∏
i=1

Pr
P 0

[
∄h ∈H0

i s.t. errorD(c,h) ≤ 1/4
]
≤

(1
4

)M
≤ β.

Lemma 5.17. For every concept class C, every α, and every β, there exists (H ,P ) that (α,β)-
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probabilistically represents C where

size(H ) = O
(

ln(
1
α

) ·
(
RepDim(C) + lnlnln(

1
α

) + lnln(
1
β

)
))
.

Proof. Let C be a concept class, and let (H 1,P 1) be a (1
4 ,β/T )-probabilistic represen-

tation for C (where T will be set later). By Claim 5.16, such a representation exists

with size(H 1) ≜ k1 ≤ RepDim(C) + lnln(T /β). We use H 1 and P 1 to create an (α,β)-

probabilistic representation for C. We begin with two notations:

1. For T hypotheses h1, . . . ,hT we denote by majh1,...,hT
the majority hypothesis. That is,

majh1,...,hT
(x) = 1 if and only if |{hi : hi(x) = 1}| ≥ T /2.

2. For T hypothesis classes H1, . . . ,HT we denote

MAJ(H1, . . . ,HT ) =
{

majh1,...,hT
: ∀1≤i≤T hi ∈Hi

}
.

Consider the following family of hypothesis classes:

H =
{

MAJ(Hi1 , . . . ,HiT ) : Hi1 , . . . ,HiT ∈H 1
}
.

Moreover, denote the distribution on H induced by the following random process as P :

For j = 1, . . . ,T :

Randomly choose Hij ∈P 1 H 1

Return MAJ(Hi1 , . . . ,HiT ).

Next we show that (H ,P ) is an (α,β)-probabilistic representation for C: For a fixed pair

of a target concept c and a distribution D, randomly choose Hi1 , . . . ,HiT ∈H 1 according to

P 1. We now show that with probability at least (1− β) the set MAJ(Hi1 , . . . ,HiT ) contains at

least one α-good hypothesis for c,D.

To this end, denote D1 =D and consider the following thought experiment, inspired

by the AdaBoost Algorithm [53]:
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For t = 1. . . . ,T :

1. Fail if Hit does not contain a 1
4-good hypothesis for c,Dt.

2. Denote by ht ∈Hit a 1
4-good hypothesis for c,Dt.

3. Dt+1(x) =


2Dt(x), if ht(x) , c(x).(
1− errorDt (c,ht)

1−errorDt (c,ht)

)
Dt(x), otherwise.

Note that as D1 is a probability distribution on X; the same is true for D2,D3, . . . ,DT . As

(H 1,P 1) is a (1
4 ,β/T )-probabilistic representation for C, the failure probability of every

iteration is at most β/T . Thus (using the union bound), with probability at least (1− β)

the whole thought experiment will succeed, and in this case we show that the error of

hfin = majh1,...,hT
is at most α.

Consider the set R = {x : hfin(x) , c(x)} ⊆ X. This is the set of points on which at least

T /2 of h1, . . . ,hT err. Next consider the partition of R to the following sets:

Rt =
{
x ∈ R :

(
ht(x) , c(x)

)
∧

(
∀i>t hi(x) = c(x)

)}
.

That is, Rt contains the points x ∈ R on which ht is last to err. Clearly Dt(Rt) ≤ 1/4, as Rt is

a subset of the set of points on which ht errs. Moreover, by the (recursive) definition of

Dt, for every x ∈ Rt we have that Dt(x) is obtained from D1(x) after multiplying it by 2 for

every 1 ≤ i ≤ t s.t. hi(x) , c(x), and multiplying it by
(
1− errorDi (c,hi )

1−errorDi (c,hi )

)
for every 1 ≤ i < t s.t.

hi(x) = c(x). As there are at least T /2 rounds 1 ≤ i ≤ t s.t. hi(x) , c(x), we have that

Dt(Rt) ≥ D1(Rt) · 2T /2 ·
(
min
1≤i<t

{
1−

errorDi
(c,hi)

1− errorDi
(c,hi)

})t−T /2
≥ D1(Rt) · 2T /2 ·

(
1− 1/4

1− 1/4

)t−T /2
(since (1− y

1−y ) ≥ (1− 1/4
1−1/4 ) for every y ≤ 1

4 )

≥ D1(Rt) · 2T /2 ·
(
1− 1/4

1− 1/4

)T /2
=D(Rt) ·

(4
3

)T /2
,
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so,

D(Rt) ≤ Dt(Rt) ·
(4
3

)−T /2
≤ 1

4
·
(4
3

)−T /2
.

Finally,

errorD(c,hfin) =D(R) =
T∑

t=T /2

D(Rt) ≤
T
2
· 1

4
·
(4
3

)−T /2
=
T
8
·
(4
3

)−T /2
.

Choosing T = 14ln( 2
α ), we get that errorD(c,hfin) ≤ α. Hence, (H ,P ) is an (α,β)-

probabilistic representation for C. Moreover, for every Hi ∈H we have that |Hi | ≤
(
ek1

)T
,

and so

size(H ) ≤ k1 · T

≤
(
RepDim(C) + lnln(T /β)

)
· T

= O
(

ln(1/α) ·
(
RepDim(C) + lnlnln(1/α) + lnln(1/β)

))
.

The next theorem states the main result of this section – RepDim characterizes the

sample complexity of private learning.

Theorem 5.18. Let C be a concept class. Then, Θ̃β

(RepDim(C)
αε

)
samples are necessary and

sufficient for the private learning of the class C.

Proof. Fix some α ≤ 1/4,β ≤ 1/2, and ε. By Lemma 5.17, there exists a pair (H ,P )

that (α6 ,
β
4 )-represent class C, where size(H ) = O

(
ln(1/α) ·

(
RepDim(C) + lnlnln(1/α) +

lnln(1/β)
))

. Therefore, by Lemma 5.12, there exists an algorithm A that (α,β,ε)-PPAC

learns the class C with a sample size

n = Oβ

( 1
αε

ln(
1
α

) ·
(
RepDim(C) + lnlnln(

1
α

)
))
.

For the lower bound, let A be an (α,β,ε)-PPAC learner for the class C with a sample

size n, where α ≤ 1/4 and β ≤ 1/2. By Lemma 5.15, there exists an (H ,P ) that (1
4 ,

1
4 )-

probabilistically represents the class C and size(H ) = ln(8) + lnln(4) + 8αεn. Therefore,
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by definition, RepDim(C) ≤ ln(8ln(4)) + 8αεn. Thus,

n ≥ 1
8αε
·
(
RepDim(C)− ln(8ln(4))

)
= Ω

(
RepDim(C)

αε

)
.

5.3 A Probabilistic Representation for Points

Example 5.8 states the existence of a constant size probabilistic representation for the class

POINTX . We now give the construction.

Claim 5.19. There exists an (α,β)-probabilistic representation for POINTX of size ln(4/α) +

lnln(1/β). Furthermore, each hypothesis h in each Hi has a short description and given x ∈ X,

the value h(x) can be computed efficiently.

Proof. Consider the following set of hypothesis classes

H =
{
H ⊆ 2X : |H | ≤ 4

α
ln(

1
β

)
}
.

That is, H ∈H if H contains at most 4
α ln( 1

β ) boolean functions. We will show an appropri-

ate distribution P s.t. (H ,P ) is an (α,β)-probabilistic representation of the class POINTX .

To this end, fix a target concept cj ∈ POINTX and a distribution D on X (remember that

j ∈ X is the unique point on which cj(j) = 1). We need to show how to randomly choose

an H ∈H such that with probability at least (1− β) over the choice of H , there will be at

least one h ∈H such that errorD(cj ,h) ≤ α. Consider the following process for randomly

choosing an H ∈H :

1. Denote M = 4
α ln( 1

β )

2. For i = 1, . . . ,M construct hypothesis hi as follows:

For each x ∈ X (independently):

Let hi(x) = 1 with probability α/2,

and hi(x) = 0 otherwise.

3. Return H = {h1,h2, . . . ,hM}.
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The above process induces a distribution on H , denoted as P . We will next analyze the

probability that the returned H does not contain an α-good hypothesis. We start by fixing

some i and analyzing the expected error of hi , conditioned on the event that hi(j) = 1. The

probability is taken over the random coins used to construct hi .

E
hi

[
errorD(cj ,hi)

∣∣∣∣ hi(j) = 1
]

= E
hi

[
E

x∼D

[ ∣∣∣cj(x)− hi(x)
∣∣∣ ] ∣∣∣∣ hi(j) = 1

]
= E

x∼D

[
E
hi

[ ∣∣∣cj(x)− hi(x)
∣∣∣ ∣∣∣∣ hi(j) = 1

]]
≤ α

2
.

Using Markov’s Inequality,

Pr
hi

[
errorD(cj ,hi) ≥ α

∣∣∣∣∣ hi(j) = 1
]
≤ 1

2
.

So, the probability that hi is α-good for cj and D is:

Pr
hi

[
errorD(cj ,hi) ≤ α

]
≥ Pr

hi
[hi(j) = 1] ·Pr

hi

[
errorD(cj ,hi) ≤ α

∣∣∣∣∣ hi(j) = 1
]

≥ α
2
· 1

2
=
α
4
.

Thus, the probability that H fails to contain an α-good hypothesis is at most
(
1− α

4

)M
,

which is less than β for our choice of M. This concludes the proof that (H ,P ) is an

(α,β)-probabilistic representation for POINTX .

When a hypothesis hi() was constructed in the above random process, the value of hi(x)

was independently drawn for every x ∈ X. This results in a hypothesis whose description

size is O(|X |), which in turn, will result in a non-efficient learning algorithm. We next

explain how to construct hypotheses whose description is short. To achieve this goal, note

that in the above analysis we only care about the probability that hi(x) = 0 given that

hi(j) = 1. Thus, we can choose the values of hi in a pairwise independent way, e.g., using a

random polynomial of degree 2. The size of the description in this case is O(log |X |).
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Chapter 6

Private Learning: Pure vs. Approximate

Differential Privacy

In the previous chapter we characterized the sample complexity of pure-private learners.

In this chapter we show striking differences between the required sample complexity for

private learning under pure-differential privacy and its variant approximate-differential

privacy.

6.1 Main Results

Recall that the sample complexity of properly learning point functions over a domain X

with pure differential privacy is Ω(log |X |) [8]. An instantiation of the Propose-Test-Release

(PTR) framework [43] by Smith and Thakurta [86] results, almost immediately, with a

proper learner for point functions, exhibiting O(1) sample complexity while preserving

approximate differential privacy. This simple technique does not suffice for our other

constructions, and we introduce a new tool for coping with proper private learning of

thresholds and axis-aligned rectangles:

Recursive algorithm for quasi-concave promise problems. We define a family of opti-

mization problems, which we call Quasi-Concave Promise Problems. The possible solutions

to these problems are ordered, and quasi-concavity means that if two solutions f ≤ h have

quality of at least X , then any solution f ≤ g ≤ h also has quality of at least X . The

optimization goal is, when there exists a solution with a promised quality of (at least) r,

to find a solution with quality ≈ r. We observe that a quasi-concave promise problem

can be privately approximated using a solution to a smaller instance of a quasi-concave
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promise problem. This allows us to construct an efficient recursive algorithm solving such

problems privately. We show that the task of learning threshold functions over a domain

X is, in fact, a quasi-concave promise problem, and it can be privately solved using our

algorithm with sample size roughly 2O(log∗ |X |).

Implications for private learning. We give new approximate-private proper-learning

algorithms for point and threshold functions. We also construct a new private proper-

learner for (a discrete version of) the class of all axis-aligned rectangles over ℓ dimensions.

Our algorithms exhibit sample complexity that is significantly lower than bounds given

in prior work, either with no dependency on the domain size |X |, or with a very mild

dependency of 2O(log∗ |X |). This separates the sample complexity of proper-learning under

pure and approximate privacy, as Ω(log |X |) samples are necessary for each of those

learning tasks under pure-differential privacy. Our algorithms are time-efficient.

6.1.1 Additional Results

In the full version of this work [11] we extend our results in the following directions.

Private Query Release. Given a set Q of queries q : Xn→ R, the query release problem for

Q is to output accurate answers to all queries in Q. That is, we want a differentially private

algorithmM : Xn→ R|Q| such that for every database S ∈ Xn, with high probability over

y←M(S), we have yq ≈ q(S) for all q ∈Q. As with private learning, we show significant

differences between the sample complexity required for private query release of simple

predicate classes under pure and approximate differential privacy.

Label privacy. We examine private learning under a relaxation of differential privacy

called label privacy (see [26] and references therein), where the learner is required to only

protect the privacy of the labels in the sample. Chaudhuri et al. [26] have proved lower

bounds for label-private learners in terms of the doubling dimension of the target concept

class. We show that the VC dimension completely characterizes the sample complexity of

such learners; that is, the sample complexity of learning with label privacy is equal (up to

constants) to learning without privacy.
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6.2 Approximate-Private Proper-Learner for Points

Recall that Ω(log |X |) examples are necessary for every pure-private proper-learner for the

class POINTX , defined as

Definition 6.1. For j ∈ X let cj : X → {0,1} be defined as cj(x) = 1 if x = j and cj(x) = 0

otherwise. Define the concept class POINTX = {cj}j∈X .

As we will now see, algorithm Adist (defined in Section 3.5) can be used as a proper

(ε,δ)-private learner for POINTX with sample complexity Oα,β,ε,δ(1). This is our first (and

simplest) example separating the sample complexity of pure and approximate private

proper-learners. Consider the following algorithm.

Algorithm LearnPoints

Input: parameters α,β,ε,δ, and a labeled database S ∈ (X × {0,1})n.

1. For every x ∈ X, define q(S,x) as the number of appearances of (x,1) in S.

2. Execute Adist on S with the quality function q and parameters ε,δ.

3. If the output was j then return cj .

4. Else, if the output was ⊥ then return a random ci ∈ POINTX .

For intuition, consider a target concept cj and an underlying distribution D. Whenever

D(j) is noticeable, a typical sample S contains many copies of the point j labeled as 1. As

every other point i , j will be labeled as 0, we expect q(S,j) to be significantly higher than

any other q(S, i), and we can use algorithm Adist to identify j.

Lemma 6.2. Let α,β,ε,δ be s.t. 2/(αβ) ≤ |X |. Algorithm LearnPoints is an efficient (α,β,ε,δ)-

PPAC proper learner for POINTX using a sample of

n = O

(
1
αε

ln
(

1
βδ

))
labeled examples.

Proof. As algorithm Adist is (ε,δ)-differentially private, all that remains is the utility

analysis. Fix a target concept cℓ ∈ POINTX and a distribution D on X. In a sample S labeled
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by cℓ, the only point that can appear with the label 1 is ℓ, and algorithm Adist has two

possible outputs: ℓ,⊥.

IfD(ℓ) > α
2 then (using the Chernoff bound), with probability at least (1− exp(−αn/16)),

the labeled example (ℓ,1) appears in S at least r = αn/4 times. Note that q(S,ℓ) ≥ r, and

every i , ℓ has quality q(S, i) = 0. For

n ≥ 8
αε

ln
(

4
βδ

)
,

by Proposition 3.28, this gap is big enough s.t. algorithm Adist outputs ℓ with probability

at least (1 − β/2). Therefore, when D(ℓ) > α
2 , the probability of LearnPoints outputting

an α-good solution is at least (1 − exp(−αn/16))(1 − β/2), which is at least (1 − β) for

n ≥ (16/α) ln(2/β).

If, on the other hand, D(ℓ) ≤ α
2 , then algorithm LearnPoints will fail to output an

α-good solution only if Adist outputs ⊥, and algorithm LearnPoints chooses a hypothesis

ci s.t. i , ℓ and D(i) > α
2 (as the error of such a hypothesis ci is D(ℓ) +D(i)). But there could

be at most 2/α such points, and the probability of LearnPoints failing is at most 2/(α · |X |).
Assuming |X | ≥ 2/(αβ), this probability is at most β.

Remark 6.3. Recall that Algorithm LearnPoints outputs a random ci ∈ POINTX wheneverAdist

outputs ⊥. In order for this random ci to be good (w.h.p.) we needed |X | (i.e., the number of

possible concepts) to be at least 2/(αβ). This requirement could be avoided by outputting the

all-zero hypothesis c0 ≡ 0 whenever Adist outputs ⊥. However, this approach results in a proper

learner only if we add the all-zero concept to POINTX .

6.3 Towards a Private Learner for Thresholds

Recall the class THRESHX of all threshold functions over a (totally ordered) domain X:

THRESHX = {cx : x ∈ X} where cx(y) = 1 iff y ≤ x.

Note that VC(THRESHX) = 1, and, therefore, there exists a proper non-private learner

for THRESHX with sample complexity Oα,β(1). As |THRESHX | = |X |, one can use the generic

construction of Kasiviswanathan et al. [67] and get a proper ε-private learner for this class
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with sample complexity Oα,β,ε(log |X |). Feldman and Xiao [51] showed that this is in fact

optimal, and every pure ε-private learner for this class (proper or improper) must have

sample complexity Ω(log |X |).
Our learner for POINTX relied on a strong “stability” property of the problem: Given a

labeled sample, either a random concept is (w.h.p.) a good output, or, there is exactly one

consistent concept in the class, and every other concept has large empirical error. This,

however, is not the case when dealing with THRESHX . In particular, many hypotheses can

have low empirical error, and changing a single entry of a sample S can significantly affect

the set of hypotheses consistent with it.

In Section 6.4, we present a proper (ε,δ)-private learner for THRESHX with sample

complexity (roughly) 2O(log∗ |X |). We use this section for motivating the construction. We

start with two simplifying assumptions. First, when given a labeled sample S, we aim

at choosing a hypothesis h ∈ THRESHX approximately minimizing the empirical error

(rather than the generalization error). Second, we assume that we are given a “diverse”

sample S that contains many points labeled as 1 and many points labeled as 0. These two

assumptions (and any other informalities made hereafter) will be removed in Section 6.4.

Assume we are given as input a sample S = (xi , yi)
n
i=1 labeled by some unknown cℓ ∈

THRESHX . We would now like to choose a hypothesis h ∈ THRESHX with small empirical error

on S, and we would like to do so while accessing the sample S only through differentially

private tools.

We refer to points labeled as 1 in S as ones, and to points labeled as 0 as zeros. Imagine

for a moment that we already have a differentially private algorithm that given S outputs

an interval G ⊆ X with the following two properties:

1. The interval G contains “a lot” of ones, and “a lot” of zeros in S.

2. Every interval I ⊆ X of length |I | ≤ |G|/k does not contain, simultaneously, “too many”

ones and “too many” zeros in S, where k is some constant.1

Such an interval will be referred to as a k-good interval. Note that a k-good interval

is, in particular, an ℓ-good interval for every ℓ ≥ k. Figure 6.1 illustrates such an interval

1We identify the length of an interval I ⊆ X with its size |I |.
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G, where the dotted line represents the (unknown) target concept, and the bold dots

correspond to sample points.

G

Figure 6.1: An illustration of a 4-good interval G.

Given such a 4-good interval G, we can (without using the sample S) define a set H

of five hypotheses s.t. at least one of them has small empirical error. To see this, consider

Figure 6.2, where G is divided into four equal intervals g1, g2, g3, g4, and five hypotheses

h1, . . . ,h5 are defined s.t. the points where they switch from one to zero are located at the

edges of g1, g2, g3, g4.

Now, as the interval G contains both ones and zeros, it must be that the target concept

cℓ switches from 1 to 0 inside G. Assume without loss of generality that this switch occurs

inside g2. Note that g2 is of length |G|/4 and, therefore, either does not contain too many

ones, and h2 is “close” to the target concept, or does not contain too many zeros, and h3 is

“close” to the target concept. For this argument to go through we need “not too many” to

be smaller than αn (say (3/4)αn), where α is our approximation parameter and n is the

sample size.

g1 g2 g3 g4

h1 h2 h3 h4 h5

Figure 6.2: Extracting a small set of hypotheses from a good interval.

After defining such a set H , we could use the exponential mechanism to choose a

hypothesis h ∈H with small empirical error on S. As the size of H is constant, this requires

only a constant number of samples. To conclude, finding a 4-good interval G (while

preserving privacy) is sufficient for choosing a good hypothesis. We next explain how to

find such an interval.
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Assume, for now, that we have a differentially private algorithm that given a sample S,

returns an interval length J s.t. there exists a 2-good interval G ⊆ X of length |G| = J . This

length J is used to find an explicit 4-good interval as follows. Divide X into intervals {Ai}
of length 2J , and into intervals {Bi} of length 2J right shifted by J as in Figure 6.3.

A1 A2 A3 A4 A5

B1 B2 B3 B4

Figure 6.3: Dividing the axis Xd into intervals of length 2J .

As the promised 2-good interval G is of length J , at least one of the these intervals

contains G. We next explain how to privately choose such interval. If, e.g., G ⊆ A2 then A2

contains both a lot of zeros and a lot of ones. The target concept must switch inside A2,

and, therefore, every other Ai , A2 cannot contain both zeros and ones. For every interval

Ai , define its quality q(Ai) to be the minimum between the number of zeros in Ai and the

number of ones in Ai . Therefore, q(A2) is large, while q(Ai) = 0 for every Ai , A2. That

is, A2 scores much better than any other Ai under this quality function q. The sensitivity

of q() is 1 and we can use algorithm Adist to privately identify A2. It suffices, e.g., that

q(A2) ≥ (1/4)αn, and we can, therefore, set our “a lot” bound to be (1/4)αn. Recall that

G ⊆ A2 is a 2-good interval, and that |A2| = 2|G|. The identified A2 is, therefore, a 4-good

interval.

To conclude, if we could indeed find (while preserving privacy) a length J s.t. there

exists a 2-good interval G of that length, then our task would be completed.

Computing the interval length J. At first attempt, one might consider performing a

binary search for such a length 1 ≤ J ≤ |X |, in which every comparison will be made using

the Laplace mechanism. More specifically, for every length 1 ≤ J ≤ |X |, define

Q(J) = max
[a,b]⊆X
|[a,b]|=J

min

 number of

zeros in [a,b]
,

number of

ones in [a,b]


 .
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If, e.g., Q(J) = 100 for some J , then there exists an interval [a,b] ⊆ X of length J that

contains at least 100 ones and at least 100 zeros. Moreover, every interval of length ≤ J

either contains at most 100 ones, or, contains at most 100 zeros; otherwise we would have

Q(J) > 100.

Note that Q(·) is a monotonically non-decreasing function, and that Q(1) = 0 (as in a

correctly labeled sample a point cannot appear both with the label 1 and with the label

0). Recall our assumption that the sample S is “diverse” (contains many points labeled

as 1 and many points labeled as 0), and, therefore, Q(|X |) is large. Hence, there exists a

J s.t. Q(J) is “big enough” (say at least (1/4)αn) while Q(J − 1) is “small enough” (say at

most (3/4)αn). That is, a J s.t. (1) there exists an interval of length J containing lots of ones

and lots of zeros; and (2), every interval of length < J cannot contain too many ones and

too many zeros simultaneously. Such a J can easily be (privately) obtained using a (noisy)

binary search. However, such a binary search on X requires log |X | noisy comparisons,

which, in turn, requires a sample of size poly(log |X |) in order to achieve reasonable utility

guarantees.

As a second attempt, one might consider performing a binary search, not on 1 ≤ J ≤ |X |,
but rather on the power j of an interval of length 2j . That is, performing a search for

a power 0 ≤ j ≤ log |X | for which there exists a 2-good interval of length 2j . Here there

are only loglog |X | noisy comparisons, and the sample size is reduced to poly(loglog |X |).
Again, a (noisy) binary search on 0 ≤ j ≤ log |X | can (privately) yield an appropriate length

J = 2j s.t. Q(2j) is “big enough”, while Q(2j−1) is “small enough”. Such a J = 2j is, indeed, a

length of a 2-good interval. Too see this, note that as Q(2j) is “big enough”, there exists

an interval of length 2j containing lots of ones and lots of zeros. Moreover, as Q(2j−1) is

“small enough”, every interval of length 2j−1 = (1/2)2j cannot contain too many ones and

too many zeros simultaneously.

Remark 6.4. A binary search as above would have to operate on noisy values of Q(·) (as otherwise

differential privacy cannot be obtained). For this reason, we set the bounds for “big enough”

and “small enough” to overlap. Namely, we search for a value j such that Q(2j) ≥ (α/4)n and

Q(2j−1) ≤ (3α/4)n, where α is our approximation parameter, and n is the sample size.

To summarize, using a binary search we find a length J = 2j such that there exists

a 2-good interval of length J . Then, using Adist, we find a 4-good interval. Finally, we
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partition this interval to 4 intervals, and using the exponential mechanism we choose a

starting point or end point of one of these intervals as our the threshold.

We will apply recursion to reduce the costs of computing J = 2j to 2O(log∗ |X |). The tool

performing the recursion would be formalized and analyzed in the next section. This tool

will later be used in our construction of a proper (ε,δ)-private learner for THRESHX .

6.4 Privately Approximating Quasi-Concave Promise Prob-

lems

We next define the notions that enable our recursive algorithm.

Definition 6.5. A function Q(·) over a totally ordered domain is quasi-concave if Q(ℓ) ≥
min{Q(i),Q(j)} for every i ≤ ℓ ≤ j.

Definition 6.6 (Quasi-concave promise problems). A quasi-concave promise problem

consists of an ordered set of possible solutions [0,T ] = {0,1, . . . ,T }, a database S ∈ Xn, a 1-

sensitive quality function Q : X∗ × [0,T ]→ R, an approximation parameter α, and another

parameter r (called a quality promise).

If Q(S, ·) is quasi-concave and if there exists a solution p ∈ [0,T ] for which Q(S,p) ≥ r then

a good output for the problem is a solution k ∈ [0,T ] satisfying Q(S,k) ≥ (1−α)r. The outcome

is not restricted otherwise.

Example 6.7. Consider a sample S = (xi , yi)
n
i=1, labeled by some target function cj ∈ THRESHX .

The goal of choosing a hypothesis with small empirical error can be viewed as a quasi-concave

promise problem as follows. Denote our totally ordered domain X as X = {0,1,2, . . . , |X | − 1}, set

the range of possible solutions to [0,T ] = X, the approximation parameter to α and the quality

promise to n. Define Q(S,k) = |{i : ck(xi) = yi}|; i.e., Q(S,k) is the number of points in S correctly

classified by ck ∈ THRESHX . Note that the target concept cj satisfies Q(S,j) = n. Our task is to

find a hypothesis hk ∈ THRESHX s.t. errorS(hk) ≤ α, which is equivalent to finding k ∈ [0, |X | −1]

s.t. Q(S,k) ≥ (1−α)n.

To see that Q(S, ·) is quasi-concave, let u ≤ v ≤ w be s.t. Q(S,u),Q(S,w) ≥ λ. See Figure 6.4

for an illustration. Consider j, the index of the target concept, and assume w.l.o.g. that j ≤ v (the
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other case is symmetric). That is, j ≤ v ≤ w. Note that cv errs only on points in between j and

v, and cw errs on all these points. That is, errorS(cv) ≤ errorS(cw), and, therefore, Q(S,v) ≥ λ.

u j v w

cj cv cw

Figure 6.4: An illustration for Example 6.7. Here cj is the target concept and the bold dots
correspond to sample points. Note that cw errs on every point on which cv errs.

Remark 6.8. Note that if the sample S in Example 6.7 is not consistent with any c ∈ THRESHX ,

then there is no j s.t. Q(S,j) = n, and the quality promise is void. Moreover, in such a case

Q(S, ·) might not be quasi-concave.

We are interested in solving quasi-concave promise problems while preserving differen-

tial privacy. As motivated by Remark 6.8, privacy must be preserved even when Q(S, ·) is

not quasi-concave or Q(S,p) < r for all p ∈ [0,T ]. We are now ready to present and analyze

our algorithm RecConcave (see inline comments for some of the underlying intuition).
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Algorithm RecConcave

Inputs: Range [0,T ], quality function Q, quality promise r, parameters α,ε,δ, and a
database S.
Optional Input: a bound N ≥ 1 on the number of recursive calls (set N =∞ otherwise).

1. If [(T ≤ 32) or (N = 1)], then use the exponential mechanism with the quality func-
tion Q and the parameter ε to choose and return an index j ∈ [0, . . . ,T ]. Otherwise
set N = N − 1.

2. Let T ′ be the smallest power of 2 s.t. T ′ ≥ T , and define Q(S, i) = min{0,Q(S,T )}
for T < i ≤ T ′.

3. For 0 ≤ j ≤ log(T ′) let

L(S, j) = max
[a,b]⊆[0,T ′]
b−a+1=2j

 min
i∈[a,b]

(
Q(S, i)

) .
For j = log(T ′) + 1 let L(S, j) = min{0,L(S, log(T ′)}.

% If L(S, j) = x then (1) there exists an interval I ⊆ [0,T ′] of length 2j s.t. Q(S, i) ≥ x for all i ∈ I ;

and (2) in every interval I ⊆ [0,T ′] of length 2j there exists a point i ∈ I s.t. Q(S, i) ≤ x. Note

that L(S,j + 1) ≤ L(S,j). See Figure 6.5 for an illustration.

4. Define the function q(S, j) = min
(
L(S, j)−(1−α)r, r−L(S, j+1)

)
where 0 ≤ j ≤ log(T ′).

% If q(S, j) is high for some j, then there exists an interval I = [a,a+ 2j − 1] s.t. every i ∈ I has a

quality Q(S, i) >> (1−α)r, and for every interval I ′ = [a′ , a′ + 2j+1 − 1] there exists i′ ∈ I ′ with

quality Q(S, i)≪ r. See Figure 6.5.

5. Let R =
α
2
r.

% R is the promise parameter for the recursive call. Note that for the maximal j with L(S, j) ≥

(1− α
2 )r we get q(S,j) ≥ α

2 r = R.

6. Execute RecConcave recursively on the range {0, . . . , log(T ′)}, the quality function
q(·, ·), the promise R, an approximation parameter 1/4, and ε,δ,N . Denote the
returned value by k, and let K = 2k.

% If the call to RecConcave was successful, then k is s.t. q(S,k) ≥ (1− 1
4 )R = 3α

8 r. That is, L(S,k) ≥

(1− 5α
8 )r and L(S,k+1) ≤ (1− 3α

8 )r. Note in the top level call the approximation parameter α is

arbitrary (given as input), and that in all of the lower level calls the approximation parameter

is fixed at 1
4 .
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Algorithm RecConcave (continued)

7. Divide [0,T ′] into the following intervals of length 8K (the last ones might be
trimmed):

A1 = [0,8K − 1], A2 = [8K,16K − 1], A3 = [16K,24K − 1], . . .

B1 = [4K,12K − 1], B2 = [12K,20K − 1], B3 = [20K,28K − 1], . . .

% We show that in at least one of those two partitions (say the {Ai}), there exists a good interval

Ag s.t. Q(S, i) = r for some i ∈ Ag , and Q(S, i) ≤ (1− 3α
8 )r for all i ∈ {0, . . . ,T } \Ag .

8. For every such interval I ∈ {Ai} ∪ {Bi} let u(S,I) = max
i∈I

(
Q(S, i)

)
.

9. Use algorithm Adist twice with parameters ε,δ and the quality function u(·, ·), once
to choose an interval A ∈ {Ai}, and once more to choose an interval B ∈ {Bi}.

% By the properties of Adist, w.h.p. at least one of the returned A and B is good.

10. Use the exponential mechanism with the quality function Q(·, ·) and parameter ε
to choose and return an index j ∈ (A∪B).

% We show that a constant fraction of the solutions in (A∪B) have high qualities, and, hence,

the exponential mechanism needs only a constant sample complexity in order to achieve

good utility guarantees.

We start the analysis of Algorithm RecConcave by bounding the number of recursive

calls.

Notation. Given an integer n, let log⌈∗⌉(n) denote the number of times that the function

⌈log(x)⌉must be iteratively applied before the result is less than or equal to 1, i.e., log⌈∗⌉(n) =

1 + log⌈∗⌉⌈log(n)⌉ if n > 1 and zero otherwise. Observe that log⌈∗⌉(n) = log∗(n).2

Observation 6.9. On a range [0,T ] there could be at most log⌈∗⌉(T ) = log∗(T ) recursive calls

throughout the execution of RecConcave.

Before proceeding to the privacy analysis, we make the following simple observation.

2Clearly, log⌈∗⌉(n) ≥ log∗(n). Let ℓ be the smallest number of the form 22·
··
2

s.t. ℓ ≥ n. We have that
log∗(ℓ) = log∗(n), and that log⌈∗⌉(ℓ) = log∗(ℓ) (as all of the numbers in the iterative process of log⌈∗⌉(ℓ) will be
integers). As log⌈∗⌉(·) is monotonically non-decreasing we get log⌈∗⌉(n) ≤ log⌈∗⌉(ℓ) = log∗(ℓ) = log∗(n).
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Q(S, ·)

[0,T ′]
0 1 2 3 ...... ...... T ′

length 2j
L(S, j) = (1− α

2 )r

length 2j+1
L(S, j + 1) = (1− 2α)r

r
(1− α

2 )r

(1− 2α)r

Figure 6.5: A demonstration for the functions L and q from steps 3,4 of RecConcave. In
the illustration, every interval of length 2j contains at least one point with quality at most
(1−α/2)r, and there exists an interval of length 2j containing only points with quality at
least (1−α/2)r. Hence, L(S, j) = (1−α/2)r. Similarly, L(S, j + 1) = (1− 2α)r. Therefore, for
this j we have that q(S, j) = min{L(S, j) − (1 −α)r, r − L(S,j + 1)} = (α/2)r. The reason for
defining q(·, ·) is the following. We were interested in identifying a j with an appropriate
lower bound on L(S, j) and with an appropriate upper bound on L(S, j + 1). That is, in
order to decide whether a given j is a good, we need to check both L(S,j) and L(S,j + 1).
After defining q(S, ·), we can simply look for a j with a high q(S, j). A high q(S, j) implies
upper and lower bounds (respectively) on L(S, j),L(S, j + 1).

Observation 6.10. Let {f1, f2, . . . , fN } be a set of 1-sensitive functions mapping X∗ to R. Then

fmax(S) = maxi{fi(S)} and fmin(S) = mini{fi(S)} are 1-sensitive functions.

We now proceed with the privacy analysis of algorithm RecConcave.

Lemma 6.11. When executed on a 1-sensitive quality function Q, parameters ε,δ, and a bound

on the recursion depth N , algorithm RecConcave preserves (3Nε,3Nδ)-differential privacy.

Proof. Note that since Q is a 1-sensitive function, all of the quality functions defined

throughout the execution of RecConcave are of sensitivity 1 (see Observation 6.10). In

each recursive call algorithm RecConcave invokes at most three differentially private

mechanisms—once with the exponential mechanism (in step 1 or in step 11), and at

most twice with algorithm Adist (in step 9). As there are at most N recursive calls, we

conclude that throughout the entire execution algorithm RecConcave invokes most 3N
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mechanisms, each (ε,δ)-differentially private. Hence, using composition (Theorem 3.5),

algorithm RecConcave is (3Nε,3Nδ)-differentially private.

We now turn to proving the correctness of algorithm RecConcave. As the proof is by

induction (on the number of recursive calls), we need to show that each of the recursive

calls to RecConcave is made with appropriate inputs. We first claim that the function

q(S, ·) constructed in step 4 is quasi-concave. Note that for this claim we do not need to

assume that Q(S, ·) is quasi-concave.

Claim 6.12. Let Q : X∗ × [0,T ]→ R be a quality function, and let the functions L(·, ·) and q(·, ·)
be as in steps 3, 4 of algorithm RecConcave. Then q(S, ·) is quasi-concave for every S ∈ X∗.

Proof. Fix S ∈ X∗. First observe that the function

L(S,j) = max
[a,b]⊆[0,T ′]
b−a+1=2j

 min
i∈[a,b]

(
Q(S, i)

)
is monotonically non-increasing (as a function of j). To see this, note that if L(S, j) = X ,

then there exists an interval of length 2j in which every point has quality at least X . In

particular, there exists such an interval of length (1/2)2j , and L(S,j − 1) ≥ X .

Now, let i ≤ ℓ ≤ j be s.t. q(S, i),q(S,j) ≥ x. We get that L(S,ℓ)−(1−α)r ≥ L(S,j)−(1−α)r ≥
x, and that r − L(S,ℓ + 1) ≥ r − L(S, i + 1) ≥ x. Therefore, q(S,ℓ) ≥ x, and q(S, ·) is quasi-

concave.

Notation. We use log⌈N ⌉(·) to denote the outcome of N iterative applications of the

function ⌈log(·)⌉, i.e.,

log⌈N ⌉(n) = ⌈log⌈log⌈· · · ⌈log︸             ︷︷             ︸
N times

(n)⌉ · · · ⌉⌉⌉ .
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Observe that for every N ≤ log∗(n) we have that3

log⌈N ⌉(n) ≤ 2 + loglog · · · log︸         ︷︷         ︸
N times

(n)

Lemma 6.13. Let Q : X∗ × [0,T ]→ R be a 1-sensitive quality function, and let S ∈ X∗ be a

database s.t. Q(S, ·) is quasi-concave. Let α ≤ 1/2 and let β,ε,δ, r,N be s.t.

max
i∈[0,T ]

{Q(S, i)} ≥ r ≥ 8N · 4
αε

{
log

(32
βδ

)
+ log⌈N ⌉(T )

}
.

When executed on S, [0,T ], r,α,ε,δ,N , algorithm RecConcave fails to output an index j s.t.

Q(S, j) ≥ (1−α)r with probability at most 2βN .

Proof. The proof is by induction on the number of recursive calls, denoted as t. For t = 1

(i.e., T ≤ 32 or N = 1), the exponential mechanism ensures that for

r ≥ 2
αε

log
(
T
β

)
,

the probability of algorithm RecConcave failing to output a j s.t. Q(S,j) ≥ (1 −α)r is at

most β.

Assume that the stated lemma holds whenever algorithm RecConcave performs at

most t − 1 recursive calls, and let S, [0,T ], r,α,ε,δ,N be inputs (satisfying the conditions of

Lemma 6.13) on which algorithm RecConcave performs t recursive calls. Consider the

first call in the execution of RecConcave on those inputs, and denote by T ′ the smallest

power of 2 s.t. T ′ ≥ T . In order to apply the inductive assumption, we need to show that

for the recursive call in step 6, all the conditions of Lemma 6.13 hold.

We first note that by Claim 6.12, the quality function q(S, ·) defined in step 4 is quasi-

concave. We next show that the recursive call is performed with an appropriate quality

promise R = (α/2)r. The conditions of the lemma ensure that L(S,0) ≥ r, and, by definition,

3For example

⌈log⌈log⌈log(n)⌉⌉⌉ ≤ ⌈log⌈log(2 + log(n))⌉⌉ ≤ ⌈log⌈log(2log(n))⌉⌉ = ⌈log⌈1 + loglog(n)⌉⌉
≤ ⌈log(2 + loglog(n))⌉ ≤ ⌈log(2loglog(n))⌉ = ⌈1 + logloglog(n)⌉ ≤ 2 + logloglog(n) .
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we have that L(S, log(T ′) + 1) ≤ 0. There exists therefore a j ∈ [0, log(T ′)] for which L(S, j) ≥
(1 − α/2)r, and L(S, j + 1) < (1 − α/2)r. Plugging these inequalities in the definition of

q(S,j) we get that q(S,j) ≥ (α/2)r. Therefore, there exists an index j ∈ [0, log(T ′)] with

quality q(S, j) ≥ R. Moreover, the recursive call of step 6 executes RecConcave on the

range [0, log(T ′)] = [0,⌈log(T )⌉] with (N − 1) as the bound on the recursion depth, with

α̃ ≜ 1/4 as the approximation parameter, and with a quality promise R satisfying

R =
α
2
r

≥ α
2
· 8N · 4

αε

{
log

(32
βδ

)
+ log⌈N ⌉(T )

}
= 8N−1 · 4

α̃ε

{
log

(32
βδ

)
+ log⌈N−1⌉⌈log(T )⌉

}
.

We next show that w.h.p. at least one of the two intervals A,B chosen in step 9, contains

a lot of points with high score. Denote the index returned by the recursive call of step 6

as k. By the inductive assumption, with probability at least (1− 2β(N − 1)), the index k is

s.t. q(S,k) ≥ (1− 1/4)R = (3α/8)r; we proceed with the analysis assuming that this event

happened. By the definition of q(S,k), this means that L(S,k) ≥ q(S,k)+(1−α)r ≥ (1−5α/8)r

and that L(S,k + 1) ≤ r −q(S,k) ≤ (1−3α/8)r. That is, there exists an interval G of length 2k

s.t. ∀i ∈ G we have Q(S, i) ≥ (1− 5α/8)r, and every interval of length 2 · 2k contains at least

one point i s.t. Q(S, i) ≤ (1− 3α/8)r.

As promised by the conditions of the lemma, there exists a point p ∈ [0,T ] with

quality Q(S,p) ≥ r. Consider the following two intervals: P1 = [p − 2 · 2k + 1,p] and

P2 = [p,p+ 2 · 2k − 1], and denote P = P1 ∪ P2 (these two intervals might be trimmed if p is

close to the edges of [0,T ]). Assuming P1, P2 are not trimmed, they both are intervals of

length 2 · 2k, and, therefore, each of them contains a point i1, i2, respectively, with quality

Q(S, i1),Q(S, i2) ≤ (1 − 3α/8)r. Therefore, by the quasi-concavity of Q(S, ·), every point

ℓ ≥ i2 and every point ℓ ≤ i1 must have quality at most Q(S,ℓ) ≤ (1 − 3α/8)r (otherwise,

by the quasi-concavity of Q(S, ·), every point between p and ℓ must have quality strictly

greater than (1− 3α/8)r, contradicting the quality bound on i1, i2). See Figure 6.6.

Note that if P1 (or P2) is trimmed, then there are no points on the left of (or on the
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P1 P2

p
Q(S,p) ≥ r

i2

Q(S, i2) ≤ (1− 3α
8 )r

i1 ℓ

Figure 6.6: A point ℓ < P cannot have quality greater than (1− 3α
8 )r.

right of) P . So, the interval P contains the point p with quality Q(S,p) ≥ r and every point

i ∈ [0,T ] \ P has quality of at most (1− 3α/8)r. Moreover, P is of length 4 · 2k − 1. As the

intervals of the partitions {Ai} and {Bi} are of length 8 · 2k, and the {Bi} are shifted by 4 · 2k,

there must exist an interval C ∈ {Ai} ∪ {Bi} s.t. P ⊆ C. Assume without loss of generality

that C ∈ {Ai}.
Recall that the quality u(S, ·) of an interval I is defined as the maximal quality Q(S, i)

of a point i ∈ I . Therefore, as p ∈ C, the quality of C is at least r. On the other hand, the

quality of every Ai , C is at most (1−3α/8)r. That is, the interval C scores better (under u)

than any other interval in {Ai} by at least an additive factor of

3α
8
r ≥ 1

ε
log

(
1
βδ

)
.

By the properties of Adist, with probability at least (1− β), the chosen interval A in step 9

is s.t. P ⊆ A. We proceed with the analysis assuming that this is the case.

Consider again the interval P containing the point p, and recall that there exists an

interval G of length 2k containing only points with quality Q(S, ·) of at least (1− 5α/8)r.

Such an interval must be contained in P . Otherwise, by the quasi-concavity of Q(S, ·), all

the points between G and the point p must also have quality at least (1− 5α/8)r, and, in

particular, P must indeed contain such an interval.

So, the chosen interval A in step 9 is of length 8 · 2k, and it contains a subinterval of

length 2k in which every point has quality at least (1− 5α/8)r. That is, at least 1/16 out of

the points in (A∪B) has quality at least (1− 5α/8)r. Therefore, as

r ≥ 4
αε

log
(

16
β

)
,
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the exponential mechanism ensures that the probability of step 10 failing to return a point

h ∈ (A∪B) with Q(S,h) ≥ (1−α)r is at most β: As there are at least (1/16)|A∪B| solutions

with quality at least (1− 5α/8)r, the probability that the exponential mechanism outputs a

specific solution h ∈ (A∪B) with Q(S,h) ≤ (1−α)r is at most

exp( ε2(1−α)r)
1

16 |A∪B|exp( ε2(1− 5α
8 )r)

.

Hence, the probability that the exponential mechanism outputs any solution h ∈ (A∪B)

with Q(S,h) ≤ (1−α)r is at most

16
exp( ε2(1−α)r)

exp( ε2(1− 5α
8 )r)

,

which is at most β for our choice of r.

All in all, with probability at least (1−2β(N−1)−2β) = (1−2βN ), algorithm RecConcave

returns an index j ∈ [0,T ] s.t. Q(S, j) ≥ (1−α)r.

Combining Lemma 6.11 and Lemma 6.13 we get the following theorem.

Theorem 6.14. Let algorithm RecConcave be executed on a range [0,T ], a 1-sensitive quality

function Q, a database S, a bound on the recursion depth N , privacy parameters ε/(3N ), δ/(3N ),

approximation parameter α, and a quality promise r. The following two statements hold:

1. Algorithm RecConcave preserves (ε,δ)-differential privacy.

2. If S is s.t. Q(S, ·) is quasi-concave, and if

max
i∈[0,T ]

{Q(S, i)} ≥ r ≥ 8N · 36N
αε

log
(6N
βδ

)
+ loglog · · · log︸         ︷︷         ︸

N times

(T )

 , (6.1)

then algorithm RecConcave fails to output an index j s.t. Q(S,j) ≥ (1−α)r with proba-

bility at most β.

Remark 6.15. Recall that the number of recursive calls on a range [0,T ] is always bounded

by log∗(T ), and note that for N = log∗(T ) we have that log⌈N ⌉(T ) ≤ 1. Therefore, the promise

80



requirement in Inequality (6.1) can be replaced with

8log∗(T ) ·
36log∗(T )

αε
log

(12log∗(T )
βδ

)
.

Remark 6.16. The computational efficiency of algorithm RecConcave depends on the quality

function Q(·, ·). Note, however, that it suffices to efficiently implement the top level call (i.e.,

without the recursion). This is true because an iteration of algorithm RecConcave, operating

on a range [0,T ], can easily be implemented in time poly(T ), and the range given as input to

recursive calls is logarithmic in the size of the initial range.

6.5 Approximate-Private Proper-Learner for Thresholds

As we will now see, algorithm RecConcave can be used as a proper (α,β,ε,δ,m)-private

learner for THRESHX . Recall Example 6.7 (showing that the goal of choosing a hypothesis

with small empirical error can be viewed as a quasi-concave promise problem), and

consider the following algorithm.

Algorithm LearnThresholds

Input: A labeled sample S = (xi , yi)
n
i=1 and parameters α,ε,δ,N .

1. Denote α̂ =
α
2
, ε̂ =

ε
3N

, and δ̂ =
δ

3N
.

2. For every j ∈ X, define Q(S,j) = |{i : cj(xi) = yi}|.

3. Execute algorithm RecConcave on the sample S, the range [0,T ] = [0, |X | − 1],

the quality function Q(·, ·), the promise n, and parameters α̂, ε̂, δ̂,N . Denote the

returned value as k.

4. Return ck.

Theorem 6.17. For every 1 ≤N ≤ log∗ |X |, algorithm LearnThresholds is an efficient proper

(α,β,ε,δ)-PPAC learner for THRESHX with sample size n, where the sample size is

n = O

8N · N
αε

log
(N
βδ

)
+ loglog · · · log︸         ︷︷         ︸

N times

|X |


 .
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Proof. By Theorem 6.14, algorithm LearnThresholds is (ε,δ)-differentially private. We

now proceed with the utility analysis. Recall that by Lemma 3.19 (generalization bound

for thresholds) it suffices to show that, for every input sample, algorithm LearnThresholds

outputs w.h.p. a hypothesis with small empirical error. To that end, fix a target concept

cj ∈ THRESHX , and let S be an arbitrary database containing n examples from X, labeled by

cj .

Observe that for the target concept cj we have Q(S, j) = n, and algorithm RecConcave

is executed in step 3 with a valid quality promise. Moreover, as shown in Example 6.7,

algorithm RecConcave is executed with a quasi-concave quality function.

So, algorithm RecConcave is executed in step 3 with a valid quality promise and with

a quasi-concave quality function. For

n ≥ 8N · 72N
αε

log
(12N
βδ

)
+ loglog · · · log︸         ︷︷         ︸

N times

(T )

 ,

algorithm RecConcave ensures that with probability at least (1−β/2), the index k at step 2

is s.t. Q(k) ≥ (1−α/2)n. The empirical error of ck is at most α/2 in such a case. Therefore,

with probability at least (1− β/2), algorithm LearnThresholds outputs a hypothesis with

error at most α/2. Thus, by Lemma 3.19 (generalization bound for threshold functions), we

conclude that algorithm LearnThresholds is a proper (α,β,ε,δ)-PPAC learner for THRESHX
with sample size n, where

n ≥ 8N · 72N
αε

log
(12N
βδ

)
+ loglog · · · log︸         ︷︷         ︸

N times

|X |

 .

Remark 6.18. By using N = log∗ |X | in Theorem 6.17, we can bound the sample complexity of

LearnThresholds by

n = O

(
8log∗ |X | · log∗ |X |

αε
log

( log∗ |X |
βδ

))
.
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6.6 Axis-Aligned Rectangles in High Dimension

Consider the class of all axis-aligned rectangles (or hyperrectangles) in the Euclidean space

Rℓ. A concept in this class could be thought of as the product of ℓ intervals, one on each

axis. We briefly describe an efficient approximate-private proper-learner for a discrete

version of this class. Formally,

Definition 6.19. For a totally ordered domain X and a⃗ = (a1, . . . , aℓ), b⃗ = (b1, . . . , bℓ) ∈ Xℓ define

the concept c[a⃗,⃗b] : Xℓ → {0,1} where c[a⃗,⃗b](x⃗) = 1 if and only if for every 1 ≤ i ≤ ℓ we have

ai ≤ xi ≤ bi . Define the concept class of all axis-aligned rectangles over Xℓ as RECTANGLEℓX =

{c[a⃗,⃗b]}a⃗,⃗b∈Xℓ .

6.6.1 Preliminaries from Private Query Release

Before formally presenting our learner for RECTANGLEℓX , we introduce additional prelimi-

naries from private query release.

Let c : X→ {0,1} be a concept. The counting query Qc : X∗→ [0,1] is

Qc(S) =
1
|S |
·
∣∣∣∣{i : c(xi) = 1}

∣∣∣∣ .
That is, Qc(S) is the fraction of the entries in S that satisfy the concept c. Given a database

S, a query release mechanism for a concept class C is required to output a synthetic database

Ŝ s.t. Qc(S) ≈Qc(Ŝ) for every c ∈ C. For computational reasons, query release mechanisms

are sometimes allowed not to return an actual database, but rather a data structure capable

of approximating Qc(S) for every c ∈ C.

Definition 6.20. Let C be a concept class and let S be a database. A function Est : C→ [0,1] is

called α-close to S if |Qc(S)−Est(c)| ≤ α for every c ∈ C. If, furthermore, Est is defined in terms

of a database Ŝ, i.e., Est(c) = Qc(Ŝ), we say that Ŝ is α-close to S.

Definition 6.21. Let C be a class of concepts mapping X to {0,1}. Let A be an algorithm that

on an input database S ∈ X∗ outputs a description of a function Est : C→ [0,1]. Algorithm A is

an (α,β,ε,δ,n)-query release mechanism for predicates in the class C, if

1. A is (ε,δ)-differentially private;
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2. For every input S ∈ Xn, we have Pr
A

[Est is α-close to S] ≥ 1− β.

The probability is over the coin tosses of algorithm A. If A’s output is defined by a database

Ŝ ∈ X∗, and Est(·) is defined as Est(c) = Qc(Ŝ), then algorithm A is said to produce synthetic

data.

Remark 6.22. Note that without the privacy requirements producing a synthetic database is

a trivial task as it is possible to simply output the input database S. Furthermore, ignoring

computational complexity, an (α,β,ε,δ,n)-query release mechanism can always be transformed

to produce synthetic data, by finding a database Ŝ that is α-close to Est. Such a database must

exist (as in particular S is α-close to Est), and is 2α-close to S (by the triangle inequality).

6.6.2 Privately Learning RECTANGLE
ℓ
X

Observe that the VC dimension of RECTANGLEℓX is 2ℓ, and, thus, it can be learned non-

privately with sample complexity Oα,β(ℓ). Note that |RECTANGLEℓX | = |X |O(ℓ), and, therefore,

the generic construction of Kasiviswanathan et al. [67] yields an inefficient proper ε-private

learner for this class with sample complexity Oα,β,ε(ℓ · log |X |).
In [68], Kearns gave an efficient (noise resistant) non-private learner for this class.

The learning model there was a variant of the statistical queries model [68], in which the

learner is also being given access to the underling distributionD. Every learning algorithm

in the statistical queries model can be transformed to satisfy differential privacy while

preserving efficiency [15, 67]. However, as Kearns’ algorithm assumes direct access to D,

this transformation cannot be applied directly.

Kearns’ algorithm begins by sampling D and using the drawn samples to divide each

axis i ∈ [ℓ] into O(ℓ/α) intervals Ii = {I} with the property that the xi component of a

random point from D is approximately equally likely to fall into each of the intervals in

Ii . The algorithm proceeds by estimating the boundary of the target rectangle separately

for every dimension i: For every interval I ∈ Ii , the algorithm uses statistical queries to

estimate the probability that a positively labeled input has its xi component in I , i.e.,

pI = Pr
x∼D

[
(x is labeled 1) ∧ (xi ∈ I)

]
.
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The algorithm places the left boundary of the hypothesis rectangle in the i-th dimension

at the left-most interval I ∈ Ii such that pI is significant, and analogously on the right.

Note that once the interval sets Ii are defined for each axis i ∈ [ℓ], estimating every

single pI can be done via statistical queries, and can, therefore, be made private using the

transformation of [15, 67]. Alternatively, estimating (simultaneously) all the pI (on the

ith axis) could be done privately using the Laplace mechanism. This use of the Laplace

mechanism is known as a histogram (see Theorem 3.25).

Thus, our task is to privately partition each axis. The straight forward approach for

privately finding Ii is by a noisy binary search for the boundary of each of the ℓ/α intervals

(in each axis). This would result in Ω(log |X |) noisy comparisons, which, in turn, results in

a private learner with a high sample complexity.

We now overcome this issue using a query release mechanism for THRESHX . Such a

mechanism is constructed in the full version of this work [11]; here we use it for privately

finding Ii .

Theorem 6.23. Fix α,β,ε,δ. There exists an efficient (α,β,ε,δ,n)-query release mechanism for

THRESHX , where

n = Õβ,ε,δ

( 1
α2.5 · 8

log∗ |X |
)
.

Moreover, the algorithm produces synthetic data.

As we next explain, such a query release mechanism can be used to (privately) divide

the axes. Given an interval [a,b] ⊆ X and a sample S, we denote the probability mass

of [a,b] under D as D[a,b], and the number of sample points in this interval as #S[a,b].

Standard arguments in learning theory (specifically, Theorem 3.17) state that for a large

enough sample (whose size is bigger than the VC dimensions of the intervals class) w.h.p.

(1/ |S |) #S[a,b] ≈ D[a,b] for every interval [a,b] ⊆ X.

On an input database S ∈ X∗, our query release mechanism for THRESHX outputs an

alternative database Ŝ ∈ X∗ s.t.

1

|Ŝ |
#Ŝ[0,b] ≈ 1

|S |
#S[0,b]
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for every interval [0,b] ⊆ X. Hence, for every interval [a,b] ⊆ X we have that

1

|Ŝ |
#Ŝ[a,b] =

1

|Ŝ |
#Ŝ[0,b]− 1

|Ŝ |
#Ŝ[0, a− 1]

≈ 1
|S |

#S[0,b]− 1
|S |

#S[0, a− 1]

=
1
|S |

#S[a,b]

≈ D[a,b].

So, in order to divide the ith axis we apply our query release mechanism for THRESHX ,

and divide the axis using the returned synthetic database. In order to accumulate error

of up to α/ℓ on each axis (as required by Kearns’ algorithm), we need to execute the

query release mechanism with an approximation parameter of (roughly) α/ℓ. Every such

execution requires, therefore, a sample of Õα,β,ε,δ

(
ℓ2.5 · 8log∗ |X |

)
elements. As there are

ℓ such executions (one for each axis), using composition (Theorem 3.6), the described

learner is of sample complexity Õα,β,ε,δ

(
ℓ3 · 8log∗ |X |

)
.

Theorem 6.24. There exists an efficient (α,β,ε,δ)-PPAC proper-learner for RECTANGLEℓX with

sample size n, where

n = O

(
n3

α2.5ε
· 8log∗ |X | · log∗ |X | · log

( n
αδ

)
· log

(
n · log∗ |X |
αβεδ

))
.

This should be contrasted with θα,β(ℓ), which is the non-private sample complexity for

this class (as the VC-dimension of RECTANGLEℓX is 2ℓ), and with θα,β,ε(ℓ · log |X |) which is

the pure-private sample complexity for this class.4

4The general construction of Kasiviswanathan et al. [67] yields an (inefficient) pure-private proper-learner
for this class with sample complexity Oα,β,ε(ℓ · log |X |). Feldman and Xiao [51] showed that this is in fact
optimal, and every ε-private (proper or improper) learner for this class must have sample complexity
Ω(ℓ · log |X |).
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Chapter 7

Private Learning of Threshold Functions

In Chapter 6 we showed that relaxing the privacy requirement from pure to approximate

differential privacy can drastically reduce the sample complexity of private learners.

Namely, we showed positive results for approximate-private proper-learners with sample

complexity that either matches or comes very close to that of non-private learning. In

light of these positive results, one might hope that the sample complexity of approximate-

private proper-learning is actually characterized by the VC dimension and is of the same

order as that of non-private learning. In this chapter we show that this is not the case.

7.1 Main Results

We revisit the task of properly learning threshold functions, and show that accomplishing

this task with differential privacy is impossible when the data universe is infinite (e.g., N or

[0,1]). In fact, we show that the sample complexity must grow with the size |X | of the data

universe: n = Ω(log∗ |X |), which is tantalizingly close to the upper bound of n = 2O(log∗ |X |)

from Chapter 6.

Theorem 7.1. The sample complexity of properly learning threshold functions over a data

universe X with approximate differential privacy is at least Ω(log∗ |X |).

This is the first non-trivial lower bound on the sample complexity of approximate-

private learners. As the VC dimension of the threshold functions is 1, this result separates

the sample complexity of approximate-private proper-learners from that of non-private

ones. In particular, properly-learning threshold functions over an infinite domain is

impossible under approximate differential privacy.
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Inspired by the ideas in our lower bound, we present a simplification of the algorithm

from Chapter 6 and improve the sample complexity to 2(1+o(1)) log∗ |X | (from roughly 8log∗ |X |).

Our algorithm is also computationally efficient, running in time nearly linear in the bit-

representation of its input database. Closing the gap between the lower bound of ≈ log∗ |X |
and the upper bound of ≈ 2log∗ |X | remains an intriguing open problem.

Our lower bound extends to the concept class of ℓ-dimensional thresholds. An ℓ-

dimensional threshold function, defined over the domain Xℓ, is a conjunction of ℓ threshold

functions, each defined on one component of the domain. This shows that our separation

between the sample complexity of private and non-private learning applies to concept

classes of every VC dimension.

Theorem 7.2. For every finite, totally ordered X and ℓ ∈ N, the sample complexity of properly

learning the class C of ℓ-dimensional threshold functions on Xℓ with differential privacy is at

least Ω(ℓ · log∗ |X |) = Ω(VC(C) · log∗ |X |).

Based on these results, it would be interesting to fully characterize the difference

between the sample complexity of proper non-private learners and of proper learners with

(approximate) differential privacy. Furthermore, our results still leave open the possibility

that improper PAC learning with (approximate) differential privacy has sample complexity

O(VC(C)). We consider this to be an important question for future work.

7.1.1 Techniques

Our results for proper learning of threshold functions are obtained by analyzing the sample

complexity of a related but simpler problem, which we call the interior-point problem. Here

we want a mechanismM : Xn→ X (for a totally ordered data universe X) such that for

every database S ∈ Xn, with high probability we have mini Si ≤M(S) ≤maxi Si . We give

reductions showing that the sample complexity of this problem is equivalent to that of

proper learning of threshold functions:

Theorem 7.3. Over every totally ordered data universe X, the interior-point problem and proper

PAC learning of threshold functions have the same sample complexity (up to constant factors)

under differential privacy.
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Thus we obtain our lower bound and our simplified and improved upper bound for

proper learning by proving such bounds for the interior-point problem, such as:

Theorem 7.4. The sample complexity for solving the interior-point problem over a data universe

X with differential privacy is Ω(log∗ |X |).

Note that for every fixed distribution D over X there exists a simple differentially

private algorithm for solving the interior-point problem (w.h.p.) over databases sampled

i.i.d. from D – simply output a point z s.t. Prx∼D[x ≥ z] = 1/2. Hence, in order to prove

Theorem 7.4, we show a distributionD over databases of size n ≈ log∗ |X | on which privately

solving the interior-point problem is impossible. The construction is recursive: we use a

hard distribution over databases of size (n− 1) over a data universe of size logarithmic in

|X | to construct the hard distribution over databases of size n over X.

7.1.2 Additional Results

In the full version of this work [22] we extend our results in the following directions.

Private Query Release. Given a set Q of queries q : Xn→ R, the query release problem

for Q is to output accurate answers to all queries in Q. That is, we want a differentially

private algorithmM : Xn→ R|Q| such that for every database S ∈ Xn, with high probability

over y←M(S), we have yq ≈ q(S) for all q ∈Q. Similarly for private learning of threshold

functions, we show new upper and lower bounds on the necessary database size for private

query release of threshold functions.

Private Distribution Learning. A fundamental problem in statistics is learning distribu-

tions, which is the task of learning an unknown distribution D given i.i.d. samples from

it. The query release problem for threshold functions is closely related to the problem

of learning an arbitrary distribution D on X up to small error in Kolmogorov (or CDF)

distance. While closeness in Kolmogorov distance is a relatively weak measure of closeness

for distributions, under various structural assumptions (e.g., the two distributions have

probability mass functions that cross in a constant number of locations), it implies close-

ness in the much stronger notion of total variation distance. Other works have developed
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additional techniques that use weak hypotheses learned under Kolmogorov distance to

test and learn distributions under total variation distance (e.g., [31, 30, 32]).

The Dvoretzky-Kiefer-Wolfowitz inequality [37] gives a probabilistic bound on the

Kolmogorov distance between a distribution and the empirical distribution of i.i.d. samples.

It implies that without privacy, any distribution over X can be learned to within arbitrarily

small constant error via the empirical CDF of O(1) samples. On the other hand, we show

that with approximate differential privacy, distribution learning instead requires sample

complexity that grows with the size of the domain.

7.2 The Interior Point Problem – Lower Bound

In this work we exhibit a close connection between the problem of privately learning

threshold functions and solving the interior point problem as defined below.

Definition 7.5. An algorithm A : Xn→ X solves the interior point problem on X with error

probability β if for every S ∈ Xn,

Pr[minS ≤ A(S) ≤maxS] ≥ 1− β,

where the probability is taken over the coins of A. The sample complexity of the algorithm A is

the database size n.

We call a solution x with minS ≤ x ≤maxS an interior point of S. Note that x need not

be a member of the database S.

We now prove our lower bound for the interior point problem, and show that solving

the interior point problem on a domain X under approximate-differential privacy requires

sample complexity

n = Ω(log∗ |X |).

In the full version of this work [22], we also show how this lower bound follows from

the construction of a new combinatorial object we call an “interior point fingerprinting

code”. This is a variant on traditional fingerprinting codes, which have been used recently

to show nearly optimal lower bounds for other problems in approximate differential

privacy [24, 49, 7].
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To prove our lower bound, we inductively construct a sequence of database distribu-

tions {Dn} supported on data universes [T (n)] = {0,1,2, . . . ,T (n)− 1} (for T (n+ 1) = 2Õ(T (n)))

over which any differentially private mechanism using n samples must fail to solve the

interior point problem. Given a hard distribution Dn over n elements (x1,x2, . . . ,xn) from

[T (n)], we construct a hard distribution Dn+1 over elements (y0, y1, . . . , yn) from [T (n+ 1)]

by setting y0 to be a random number, and letting each other yi agree with y0 on the xi

most significant digits. We then show that if y is the output of any differentially private

interior point mechanism on (y0, . . . , yn), then with high probability, y agrees with y0 on at

least minxi entries and at most maxxi entries. Thus, a private mechanism for solving the

interior point problem on Dn+1 can be used to construct a private mechanism for Dn, and

so Dn+1 must also be a hard distribution.

Our lower bound for the interior point problem depends on a number of parameters

we now define. Fix 0 < ε < 1
4 . Let δ(n) be any positive non-increasing sequence s.t. for

every n it holds that

Pn ≜
eε

eε + 1
+ (eε + 1)

n∑
j=1

δ(j) <
3
4
.

In particular, for 0 < ε < 1
4 , it suffices that

∑∞
n=1δ(n) ≤ 1

20 , which it true for δ(n) ≤ 1/(50n2).

Let b(n) = 1/δ(n) and define the function T recursively by

T (1) = 2 and T (n+ 1) = b(n+ 1)T (n).

Lemma 7.6. Fix any constant 0 < ε < 1/4. Let δ(n) ≤ 1/(50n2). Then for every positive integer

n, there exists a distribution Dn over databases S ∈ [T (n)]n = {0,1, . . . ,T (n)− 1}n such that for

every (ε,δ(n))-differentially private mechanismM,

Pr[minS ≤M(S) ≤maxS] ≤ Pn,

where the probability is taken over S←R Dn and the coins ofM.

In words, every (ε,δ(n))-differentially private mechanism with sample complexity n for

solving the interior point problem on a domain of size T (n) has success probability strictly

less than 3/4. We remark that our choice of δ = O(1/n2) is unimportant; any monotonically

non-increasing convergent series will do.
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Proof of Lemma 7.6. The proof is by induction on n. We first argue that the claim holds for

n = 1 by letting D1 be uniform over the singleton databases (0) and (1). To that end let

x←R D1 and note that for any (ε,δ(1))-differentially private mechanismM0 : {0,1} → {0,1}
it holds that

Pr[M0(x) = x] ≤ eε Pr[M0(x) = x] + δ(1) = eε(1−Pr[M0(x) = x]) + δ(1),

giving the desired bound on Pr[M0(x) = x].

Now inductively suppose we have a distribution Dn that satisfies the claim. We con-

struct a distribution Dn+1 on databases (y0, y1, . . . , yn) ∈ [T (n + 1)]n+1 that is sampled as

follows:

• Sample (x1, . . . ,xn)←R Dn.

• Sample a uniformly random y0 from [T (n+ 1)]. We write the base b(n+ 1) representa-

tion of y0 as y(1)
0 y

(2)
0 . . . y

(T (n))
0 .

• For each i = 1, . . . ,n let yi be a base b(n + 1) number (written y
(1)
i y

(2)
i . . . y

(T (n))
i ) that

agrees with the base b(n+ 1) representation of y0 on the first xi digits and contains a

random sample from [b(n+ 1)] in every index thereafter.

Suppose for the sake of contradiction that there was an (ε,δ(n+ 1))-differentially private

mechanism M̂ that could solve the interior point problem onDn+1 with probability greater

than Pn+1. We use M̂ to construct the following private mechanismM for solving the

interior point problem on Dn, giving the desired contradiction:

AlgorithmM(S)

Input: Database S = (x1, . . . ,xn) ∈ [T (n)]n

1. Construct Ŝ = (y0, . . . , yn) by sampling from Dn+1, but starting with the database S.

That is, sample y0 uniformly at random and set every other yi to be a random base

b(n+ 1) string that agrees with y0 on the first xi digits.

2. Compute y←M̂(Ŝ).

3. Return the length of the longest prefix of y (in base b(n+ 1) notation) that agrees

with y0.
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The mechanismM is also (ε,δ(n+1))-differentially private, since for all pairs of adjacent

databases S,S ′ and every F ⊆ [T (n)],

Pr[M(S) ∈ F] = E
y0←R[T (n+1)]

Pr[M̂(Ŝ) ∈ F̂ | y0]

≤ E
y0←R[T (n+1)]

(eε Pr[M̂(Ŝ ′) ∈ F̂ | y0] + δ(n+ 1))

(since Ŝ and Ŝ ′ are neighboring databases for fixed y0)

= eε Pr[M(S ′) ∈ F] + δ(n+ 1),

where F̂ is the set of y that agree with y0 in exactly the first x entries for some x ∈ F.

Now we argue thatM solves the interior point problem on Dn with probability greater

than Pn. First we show that x ≥minS with probability greater than Pn+1. Observe that by

construction, all the elements of Ŝ agree in at least the first minS digits, and hence so does

any interior point of Ŝ. Therefore, ifM′ succeeds in outputting an interior point y of Ŝ,

then y must in particular agree with y0 in at least minS digits, so x ≥minS.

Now we use the privacy that M̂ provides to y0 to show that x ≤ maxS except with

probability at most eε/b(n + 1) + δ(n + 1). Fix a database S. Let w = maxS, and fix all

the randomness ofM but the (w + 1)st entry of y0 (note that since w = maxS, this fixes

y1, . . . , yn). Since the (w+ 1)st entry of y0 is still a uniformly random element of [b(n+ 1)],

the privately produced entry yw+1 should not be able to do much better than randomly

guessing y
(w+1)
0 . Formally, for each z ∈ [b(n+ 1)], let Ŝz denote the database Ŝ with y

(w+1)
0

set to z and everything else fixed as above. Then by the differential privacy of M̂,

Pr
z∈[b(n+1)]

[M̂(Ŝz)
w+1 = z] =

1
b(n+ 1)

∑
z∈[b(n+1)]

Pr[M̂(Ŝz)
w+1 = z]

≤ 1
b(n+ 1)

∑
z∈[b(n+1)]

E
z′←R[b(n+1)]

[
eε Pr[M̂(Ŝz′ )

w+1 = z] + δ(n+ 1)
]

≤ eε

b(n+ 1)
+ δ(n+ 1),

where all probabilities are also taken over the coins of M̂. Observe that x ≤maxS whenever
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yw+1 , y
(w+1)
0 , and thus, we have that x ≤maxS except with probability at most eε/b(n+

1) + δ(n+ 1). By a union bound, minS ≤ x ≤maxS with probability greater than

Pn+1 −
(

eε

b(n+ 1)
+ δ(n+ 1)

)
= Pn.

This gives the desired contradiction.

We now finalize our lower bound on the sample complexity of private algorithms for

solving the interior point problem by estimating the T (n) guaranteed by Lemma 7.6.

Theorem 7.7. Fix any constant 0 < ε < 1/4. Let δ(n) ≤ 1/(50n2). Then for every positive

integer n, solving the interior point problem on X with probability at least 3/4 and with

(ε,δ(n))-differential privacy requires sample complexity n ≥Ω(log∗ |X |).

Lemma 7.6 states that every (ε,δ(n))-differentially private mechanism with sample

complexity n for solving the interior point problem on a domain of size T (n) has suc-

cess probability strictly less than 3/4. Alternatively, every (ε,δ(n))-differentially private

mechanism that solves the interior point problem on a domain of size T (n) with success

probability at least 3/4 must have sample complexity greater than n. Thus, to prove

Theorem 7.7, we need to show that n = Ω (log∗(T (n))).

Proof of Theorem 7.7. Let T (n) be as in Lemma 7.6. We introduce the following notation

for iterated exponentials:

tower(0)(x) = x and tower(k)(x) = 2tower(k−1)(x).

Observe that for k ≥ 1, x ≥ 1, and M > 16,

Mtower(k)(x) = 2tower(k)(x)·logM

= tower(2)(tower(k−1)(x) + loglogM)

≤ tower(2)(tower(k−1)(x+ loglogM))

= tower(k+1)(x+ loglogM).
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By induction on n we get an upper bound of

T (n) ≤ tower(n−1)(2 +n loglog(50n2)) ≤ tower(n+log∗(2+n loglog(50n2)))(1).

This immediately shows that solving the interior point problem on X = [T (n)] requires

sample complexity

n ≥ log∗T (n)− log∗(2 +n loglog(50n2))

≥ log∗T (n)−O(log∗ log∗T (n))

= log∗ |X | −O(log∗ log∗ |X |).

To get a lower bound for solving the interior point problem on X when |X | is not of the

form T (n), note that a mechanism for X is also a mechanism for every X ′ s.t. |X ′ | ≤ |X |. The

lower bound follows by setting |X ′ | = T (n) for the largest n such that T (n) ≤ |X |.

7.3 The Interior Point Problem – Upper Bound

We now present a recursive algorithm, RecPrefix, for privately solving the interior point

problem. Recall that in Chapter 6 we presented algorithm RecConcave for privately

solving quasi-concave promise problems. While algorithm RecPrefix is more efficient,

algorithm RecConcave is more general. Indeed, the interior point problem can easily be

stated as a quasi-concave promise problems, but the reverse direction is not immediately

clear.

Theorem 7.8. Let β,ε,δ > 0, let X be a finite, totally ordered domain, and let n ∈ N with

n ≥ 18500
ε · 2log∗ |X | · log∗(|X |) · ln(4log∗ |X |

βεδ ). If RecPrefix (defined below) is executed on a database

S ∈ Xn with parameters β
3log∗ |X | ,

ε
2log∗ |X | ,

δ
2log∗ |X | , then

1. RecPrefix is (ε,δ)-differentially private;

2. With probability at least (1− β), the output x satisfies min{xi : xi ∈ S} ≤ x ≤max{xi : xi ∈
S}.

The idea of the algorithm is that on each level of recursion, RecPrefix takes an input

database S over X and constructs a database S ′ over a smaller universe X ′, where |X ′ | =
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log |X |, in which every element is the length of the longest prefix of a pair of elements in S

(represented in binary). In a sense, this reverses the construction presented in Section 7.2.

We remark that RecPrefix is computationally efficient, running in time O(n · log |X |), which

is linear in the bit-representation of the input database.

7.3.1 The Choosing Mechanism

Before formally presenting the algorithm RecPrefix, we describe an (ε,δ)-differentially

private variant of the exponential mechanism called the choosing mechanism.1

A quality function q : X∗ × F → N with sensitivity at most 1 is of k-bounded-growth

if adding an element to a database can increase (by 1) the score of at most k solutions,

without changing the scores of other solutions. Specifically, it holds that

1. q(∅, f ) = 0 for all f ∈ F,

2. If S2 = S1 ∪ {x}, then q(S1, f ) + 1 ≥ q(S2, f ) ≥ q(S1, f ) for all f ∈ F, and

3. If S2 = S1 ∪ {x}, then there are at most k values of f for which q(S2, f ) = q(S1, f ) + 1.

The choosing mechanism is a differentially private algorithm for approximately solving

bounded-growth choice problems: Given a database S and a k-bounded-growth quality

function q : X∗ ×F→ N, the goal is to privately identify a solution f ∈ F with high q(S,f ).

We denote OPT(S) = maxf ∈F{q(S,f )}. Step 1 of the algorithm checks whether a good

solution exists (otherwise any solution is approximately optimal) and step 2 invokes the

exponential mechanism, but with the small set G(S) of good solutions instead of F.

Algorithm Choosing Mechanism

Input: database S, quality function q, solution set F, and parameters β,ε,δ and k.

1. Set ÕPT(S) = OPT(S) + Lap(4
ε ). If ÕPT(S) < 8

ε ln( 4k
βεδ ) then halt and return ⊥.

2. Let G(S) = {f ∈ F : q(S,f ) ≥ 1}. Choose and return f ∈ G(S) using the exponential
mechanism with parameter ε/2.

1The choosing mechanism was first introduced in the work of Beimel et al. [11], which is presented in
Chapter 6. Due to space limitations, we omitted its description and applications from Chapter 6. See [11]
for more details.
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The following lemmas give the privacy and utility guarantees of the choosing mecha-

nism.

Lemma 7.9. Fix δ > 0, and 0 < ε ≤ 2. If q is a k-bounded-growth quality function, then the

choosing mechanism is (ε,δ)-differentially private.

Lemma 7.10. Assume that the choosing mechanism is executed on a k-bounded-growth quality

function q, and on a database S containing n elements. With probability at least (1− β), the

choosing mechanism outputs a solution f with quality q(S,f ) ≥OPT(S)− 16
ε ln(4kn

βεδ ).

Sometimes, a solution f ∈ F s.t. q(S,f ) > 0 suffices. In such cases it is convenient to use

to following variant of Lemma 7.10:

Lemma 7.11. Assume that the choosing mechanism is executed on a k-bounded-growth quality

function q, and on a database S s.t. there exists a solution f̂ with quality q(S, f̂ ) ≥ 16
ε ln( 4k

βεδ ).

With probability at least (1 − β), the choosing mechanism outputs a solution f with quality

q(S,f ) ≥ 1.

We supply the proofs of privacy and utility for the choosing mechanism.

Proof of Lemma 7.9. Let A denote the choosing mechanism (Algorithm 8). Let S,S ′ be

neighboring databases of n elements. We need to show that Pr[A(S) ∈ R] ≤ exp(ε) ·
Pr[A(S ′) ∈ R]+δ for every set of outputs R ⊆ F∪{⊥}. Note first that OPT(S) = maxf ∈F{q(S,f )}
has sensitivity at most 1, so by the properties of the Laplace mechanism,

Pr[A(S) =⊥] = Pr
[
ÕPT(S) <

8
ε

ln(
4k
βεδ

)
]

≤ exp(
ε
4

) ·Pr
[
ÕPT(S ′) <

8
ε

ln(
4k
βεδ

)
]

= exp(
ε
4

) ·Pr[A(S ′) =⊥]. (7.1)

Similarly, we have Pr[A(S) ,⊥] ≤ exp(ε/4)Pr[A(S ′) ,⊥]. Thus, we my assume below that

⊥ < R. (If ⊥ ∈ R, then we can write Pr[A(S) ∈ R] = Pr[A(S) = ⊥] + Pr[A(S) ∈ R \ {⊥}], and

similarly for S ′.)
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Case (a): OPT(S) < 4
ε ln( 4k

βεδ ). It holds that

Pr[A(S) ∈ R] ≤ Pr[A(S) ,⊥]

≤ Pr
[
Lap

(4
ε

)
>

4
ε

ln
(

4k
βεδ

)]
≤ δ ≤ Pr[A(S ′) ∈ R] + δ.

Case (b): OPT(S) ≥ 4
ε ln( 4k

βεδ ). Let G(S) and G(S ′) be the sets used in step 2 in the execu-

tions on S and on S ′, respectively. We will show that the following two facts hold:

Fact 1 : For every f ∈ G(S) \G(S ′), it holds that Pr[A(S) = f ] ≤ δ
k .

Fact 2 : For every possible output f ∈ G(S)∩G(S ′), it holds that Pr[A(S) = f ] ≤ eε·Pr[A(S ′) =

f ].

We first show that the two facts imply that the lemma holds for Case (b). Let B ≜

G(S) \G(S ′), and note that as q is of k-bounded growth, |B| ≤ k. Using the above two facts,

for every set of outputs R ⊆ F we have

Pr[A(S) ∈ R] = Pr[A(S) ∈ R \B] +
∑

f ∈R∩B
Pr[A(S) = f ]

≤ eε ·Pr[A(S ′) ∈ R \B] + |R∩B|δ
k

≤ eε ·Pr[A(S ′) ∈ R] + δ.

To prove Fact 1, let f ∈ G(S) \G(S ′). That is, q(S,f ) ≥ 1 and q(S ′, f ) = 0. As q has

sensitivity at most 1, it must be that q(S,f ) = 1. As there exists f̂ ∈ S with q(S, f̂ ) ≥ 4
ε ln( 4k

βεδ ),

we have that

Pr[A(S) = f ] ≤ Pr

 The exponential

mechanism chooses f

 ≤ exp( ε4 · 1)

exp( ε4 ·
4
ε ln( 4k

βεδ ))
= exp

(ε
4

) βεδ
4k

,

which is at most δ/k for ε ≤ 2.
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To prove Fact 2, let f ∈ G(S)∩G(S ′) be a possible output of A(S). We use the following

Fact 3, proved below.

Fact 3 :
∑

h∈G(S ′)
exp( ε4q(S ′,h)) ≤ eε/2 ·

∑
h∈G(S)

exp( ε4q(S,h)).

Using Fact 3, for every possible output f ∈ G(S)∩G(S ′) we have that

Pr[A(S) = f ]
Pr[A(S ′) = f ]

=
(
Pr[A(S) ,⊥] ·

exp( ε4q(f ,S))∑
h∈G(S) exp( ε4q(h,S))

)/(
Pr[A(S ′) ,⊥] ·

exp( ε4q(f ,S ′))∑
h∈G(S ′) exp( ε4q(h,S ′))

)
=

Pr[A(S) ,⊥]
Pr[A(S ′) ,⊥]

·
exp( ε4q(f ,S))
exp( ε4q(f ,S ′))

·
∑

h∈G(S ′) exp( ε4q(h,S ′))∑
h∈G(S) exp( ε4q(h,S))

≤ e
ε
4 · e

ε
4 · e

ε
2 = eε.

We now prove Fact 3. Let X ≜
∑

h∈G(S) exp( ε4q(S,h)). Since there exists a solution f̂ s.t.

q(S, f̂ ) ≥ 4
ε ln( 4k

βεδ ), we have X ≥ exp( ε4 ·
4
ε ln( 4k

βεδ )) ≥ 4k
ε .

Now, recall that q is of k-bounded growth, so |G(S ′) \G(S)| ≤ k, and every h ∈ (G(S ′) \
G(S)) satisfies q(S ′,h) = 1. Hence,

∑
h∈G(S ′)

exp
(ε
4
q(S ′,h)

)
≤ k · exp

(ε
4

)
+

∑
h∈G(S ′)∩G(S)

exp
(ε
4
q(S ′,h)

)
≤ k · exp

(ε
4

)
+ exp

(ε
4

)
·

∑
h∈G(S ′)∩G(S)

exp
(ε
4
q(S,h)

)
≤ k · exp

(ε
4

)
+ exp

(ε
4

)
·

∑
h∈G(S)

exp
(ε
4
q(S,h)

)
= k · eε/4 + eε/4 · X ≤ eε/2X ,

where the last inequality follows from the fact that X ≥ 4k/ε. This concludes the proof of

Fact 3, and completes the proof of the lemma.

The utility analysis for the choosing mechanism is rather straightforward:

Proof of Lemma 7.11. Recall that the mechanism defines ÕPT(S) as OPT(S) + Lap(4
ε ). Note

that the mechanism succeeds whenever ÕPT(S) ≥ 8
ε ln( 4k

βεδ ). This happens provided the
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Lap
(

4
ε

)
random variable is at most 8

ε ln( 4k
βεδ ), which happens with probability at least

(1− β).

Proof of Lemma 7.10. Note that if OPT(S) < 16
ε ln(4kn

βεδ ), then every solution is a good output,

and the mechanism cannot fail. Assume, therefore, that there exists a solution f s.t.

q(f ,S) ≥ 16
ε ln(4kn

βεδ ), and recall that the mechanism defines ÕPT(S) as OPT(S) + Lap(4
ε ). As

in the proof of Lemma 7.11, with probability at least 1− β/2, we have ÕPT(S) ≥ 8
ε ln

(
4k
βεδ

)
.

Assuming this event occurs, we will show that with probability at least 1 − β/2, the

exponential mechanism chooses a solution f s.t. q(S,f ) ≥OPT(S)− 16
ε ln(4kn

βεδ ).

By the growth-boundedness of q, and as S is of size n, there are at most kn possible

solutions f with q(S,f ) > 0. That is, |G(S)| ≤ kn. By the properties of the exponential

mechanism, we obtain a solution as desired with probability at least(
1− kn · exp

(
−ε

4
· 16
ε

ln
(

4kn
βεδ

)))
≥

(
1−

β

2

)
.

By a union bound, we get that the choosing mechanism outputs a good solution with

probability at least (1− β).

7.3.2 The RecPrefix Algorithm

We are now ready to present and analyze the algorithm RecPrefix.

We start the analysis of RecPrefix with the following two simple observations.

Observation 7.12. There are at most log∗ |X | recursive calls throughout the execution of

RecPrefix on a database S ∈ X∗.

Observation 7.13. Let RecPrefix be executed on a database S ∈ Xn, where n ≥ 2log∗ |X | · 2312
ε ·

ln( 4
βεδ ). Every recursive call throughout the execution operates on a database containing at least

1540
ε · ln( 4

βεδ ) elements.

Proof. This follows from Observation 7.12 and from the fact that the ith recursive call is

executed on a database of size ni = n
2i−1 − k

∑i−2
ℓ=0(1

2 )ℓ ≥ n
2i
− 2k.

We now analyze the utility guarantees of RecPrefix by proving the following lemma.
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Algorithm RecPrefix

Input: Database S = (xj)
n
j=1 ∈ X

n, parameters β,ε,δ.

1. If |X | ≤ 32, then use the exponential mechanism with privacy parameter ε and
quality function q(S,x) = min

{
#{j : xj ≥ x},#{j : xj ≤ x}

}
to choose and return a point

x ∈ X.

2. Let k = ⌊386
ε ln( 4

βεδ )⌋, and let Y = (y1, y2, . . . , yn−2k) be a random permutation of the
smallest (n−2k) elements in S.

3. For j = 1 to n−2k
2 , define zj as the length of the longest prefix for which y2j−1 agrees

with y2j (in base 2 notation).

4. Execute RecPrefix recursively on S ′ = (zj)
(n−2k)/2
j=1 ∈ (X ′)(n−2k)/2 with parameters

β,ε,δ. Recall that |X ′ | = log |X |. Denote the returned value by z.

5. Use the choosing mechanism to choose a prefix L of length (z + 1) with a large
number of agreements among elements in S. Use parameters β,ε,δ, and the quality
function q : X∗ × {0,1}z+1 → N, where q(S,I) is the number of agreements on I
among x1, . . . ,xn.

6. For σ ∈ {0,1}, define Lσ ∈ X to be the prefix L followed by (log |X |−z−1) appearances
of σ .

7. Compute b̂ig = Lap(1
ε ) + #{j : xj ≥ L1}.

8. If b̂ig ≥ 3k
2 then return L1. Otherwise return L0.

Lemma 7.14. Let β,ε,δ, and S ∈ Xn be inputs on which RecPrefix performs at most N recursive

calls, all of which are on databases of at least 1540
ε · ln( 4

βεδ ) elements. With probability at least

(1− 3βN ), the output x is s.t.

1. ∃xi ∈ S s.t. xi ≤ x;

2. |{i : xi ≥ x}| ≥ k ≜ ⌊386
ε · ln( 4

βεδ )⌋.

Before proving the lemma, we make a combinatorial observation that motivates the

random shuffling in step 2 of RecPrefix. A pair of elements y,y′ ∈ S is useful in Algorithm

RecPrefix if many of the values in S lie between y and y′ – a prefix on which y,y′ agree

is also a prefix of every element between y and y′. A prefix common to a useful pair can

hence be identified privately via stability-based techniques. Towards creating useful pairs,

the set S is shuffled randomly. We will use the following lemma:
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Claim 7.15. Let (Π1,Π2, . . . ,Πn) be a random permutation of (1,2, . . . ,n). Then for all r ≥ 1,

Pr
[∣∣∣∣∣{i : |Π2i−1 −Π2i | ≤

r
12

}∣∣∣∣∣ ≥ r
]
≤ 2−r

Proof. We need to show that w.h.p. there are at most r “bad” pairs (Π2i−1,Π2i) within

distance r
12 . For each i, we call Π2i−1 the left side of the pair, and Π2i the right side of the

pair. Let us first choose r elements to be placed on the left side of r bad pairs (there are
(n
r

)
such choices). Once those are fixed, there are at most ( r6 )r choices for placing elements on

the right side of those pairs. Now we have r pairs and n−2r unpaired elements that can be

shuffled in (n− r)! ways. Overall, the probability of having at least r bad pairs is at most(n
r

)
( r6 )r(n− r)!

n!
=

( r6 )r

r!
≤

( r6 )r
√
rrre−r

=
er
√
r6r
≤ 2−r ,

where we have used Stirling’s approximation for the first inequality.

Suppose we have paired random elements in our input database S, and constructed

a database S ′ containing lengths of the prefixes for those pairs. Moreover, assume that

by recursion we have identified a length z which is the length of at least r random pairs.

Although those prefixes may be different for each pair, Claim 7.15 guarantees that (w.h.p.)

at least one of these prefixes is the prefix of at least r
12 input elements. This will help us in

(privately) identifying such a prefix.

Proof of Lemma 7.14. The proof is by induction on the number of recursive calls, denoted

as t. For t = 1 (i.e., |X | ≤ 32), the claim holds as long as the exponential mechanism outputs

an x with q(S,x) ≥ k except with probability at most β. By Proposition 3.27, it suffices to

have n ≥ 1540
ε · ln( 4

βεδ ), since 32exp(−ε(n/2− k)/2) ≤ β.

Assume that the stated lemma holds whenever RecPrefix performs at most t−1 recursive

calls. Let β,ε,δ and S = (xi)
n
i=1 ∈ X

n be inputs on which algorithm RecPrefix performs t

recursive calls, all of which are on databases containing at least 1540
ε · ln( 4

βεδ ) elements.

Consider the first call in the execution on those inputs, and let y1, . . . , yn−2k be the random
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permutation chosen in step 2. We say that a pair y2j−1, y2j is close if∣∣∣∣∣∣∣∣∣∣∣
i :

y2j−1 ≤ yi ≤ y2j

or

y2j ≤ yi ≤ y2j−1


∣∣∣∣∣∣∣∣∣∣∣ ≤

k − 1
12

.

By Claim 7.15, except with probability at most 2−(k−1) < β, there are at most (k − 1) close

pairs. We continue the proof assuming that this is the case.

Let S ′ = (zi)
(n−2k)/2
i=1 be the database constructed in step 3. By the inductive assumption,

with probability at least (1− 3β(t − 1)), the value z obtained in step 4 is s.t. (1) ∃zi ∈ S ′ s.t.

zi ≤ z; and (2) |{zi ∈ S ′ : zi ≥ z}| ≥ k. We proceed with the analysis assuming that this event

happened.

By (2), there are at least k pairs y2j−1, y2j that agree on a prefix of length at least z. At

least one of those pairs, say y2j∗−1, y2j∗ , is not close. Note that every y between y2j∗−1 and

y2j∗ agrees on the same prefix of length z, and that there are at least k−1
12 such elements in

S. Moreover, as the next bit is either 0 or 1, at least half of those elements agree on a prefix

of length (z+ 1). Thus, when using the choosing mechanism in step 5 (to choose a prefix

of length (z+ 1)), there exists at least one prefix with quality at least k−1
24 ≥

16
ε · ln( 4

βεδ ). By

Lemma 7.10, the choosing mechanism ensures, therefore, that with probability at least

(1− β), the chosen prefix L is the prefix of at least one yi′ ∈ S, and, hence, this yi′ satisfies

L0 ≤ yi′ ≤ L1 (defined in step 6). We proceed with the analysis assuming that this is the

case.

Let zĵ ∈ S ′ be s.t. zĵ ≤ z. By the definition of zĵ , this means that y2ĵ−1 and y2ĵ agree on a

prefix of length at most z. Hence, as L is of length z+1, we have that either min{y2ĵ−1, y2ĵ} <
L0 or max{y2ĵ−1, y2ĵ} > L1. If min{y2ĵ−1, y2ĵ} < L0, then L0 satisfies Condition 1 of being a

good output. It also satisfies Condition 2 because yi′ ≥ L0 and yi′ ∈ Y , which we took to be

the smallest n− 2k elements of S. Similarly, L1 is a good output if max{y2ĵ−1, y2ĵ} > L1. In

any case, at least one out of L0,L1 is a good output.

If both L0 and L1 are good outputs, then step 8 cannot fail. We have already established

the existence of L0 ≤ yi′ ≤ L1. Hence, if L1 is not a good output, then there are at most

(k−1) elements xi ∈ S s.t. xi ≥ L1. Hence, the probability of b̂ig ≥ 3k/2 and step 8 failing is

at most exp(−εk2 ) ≤ β. It remains to analyze the case where L0 is not a good output (and L1

103



is).

If L0 is not a good output, then every xj ∈ S satisfies xj > L0. In particular, min{y2ĵ−1, y2ĵ} >
L0, and, hence, max{y2ĵ−1, y2ĵ} > L1. Recall that there are at least 2k elements in S that are

bigger than max{y2ĵ−1, y2ĵ}. As k ≥ 2
ε ln( 1

β ), the probability that b̂ig < 3k/2 and RecPrefix

fails to return L1 in this case is at most β.

All in all, RecPrefix fails to return an appropriate x with probability at most 3βt.

We now proceed with the privacy analysis.

Lemma 7.16. When executed for N recursive calls, RecPrefix is (2εN,2δN )-differentially

private.

Proof. The proof is by induction on the number of recursive calls, denoted by t. If t = 1

(i.e., |X | ≤ 32), then by Proposition 3.27 the exponential mechanism ensures that RecPrefix

is (ε,0)-differentially private. Assume that the stated lemma holds whenever RecPrefix

performs at most t − 1 recursive calls, and let S1,S2 ∈ X∗ be two neighboring databases

on which RecPrefix performs t recursive calls.2 Let B denote an algorithm consisting of

steps 1-4 of RecPrefix (the output of B is the value z from step 4). Consider the executions

of B on S1 and on S2, and denote by Y1,S
′
1 and by Y2,S

′
2 the elements Y ,S ′ as they are in

the executions on S1 and on S2.

We show that the distributions on the databases S ′1 and S ′2 are similar in the sense that

for each database in one of the distributions there exists a neighboring database in the

other that has the same probability. Thus, applying the recursion (which is differentially

private by the inductive assumption) preserves privacy. We now make this argument

formal.

First note that as S1,S2 differ in only one element, there is a bijection between orderings

Π and Π̂ of the smallest (n− 2k) elements of S1 and of S2, respectively, s.t. Y1 and Y2 are

neighboring databases. This is because there exists a permutation of the smallest (n− 2k)

elements of S1 that is a neighbor of the smallest (n− 2k) elements of S2; composition with

this fixed permutation yields the desired bijection. Moreover, note that whenever Y1,Y2

are neighboring databases, the same is true for S ′1 and S ′2. Hence, for every set of outputs

F it holds that
2The recursion depth is determined by |X |, which is identical in S1 and in S2.
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Pr[B(S) ∈ F] =
∑
Π

Pr[Π] ·Pr[RecPrefix(S ′1) ∈ F|Π]

≤ e2ε(t−1) ·
∑
Π

Pr[Π] ·Pr[RecPrefix(S ′2) ∈ F|Π̂] + 2δ(t − 1)

= e2ε(t−1) ·
∑
Π̂

Pr[Π̂] ·Pr[RecPrefix(S ′2) ∈ F|Π̂] + 2δ(t − 1)

= e2ε(t−1) ·Pr[B(S ′) ∈ F] + 2δ(t − 1)

So when executed for t recursive calls, the sequence of steps 1-4 of RecPrefix is

(2ε(t−1),2δ(t−1))-differentially private. In steps 5 and 7, algorithm RecPrefix interacts

with its database through the choosing mechanism and using the Laplace mechanism,

each of which is (ε,δ)-differentially private. By composition (Theorem 3.5), we get that

RecPrefix is (2tε,2tδ)-differentially private.

Combining Lemma 7.14 and Lemma 7.16 we obtain Theorem 7.8.

Informal Discussion and Open Questions

An natural open problem is to close the gap between our (roughly) 2log∗ |X | upper bound on

the sample complexity of privately solving the interior point problem (Theorem 7.8), and

our log∗ |X | lower bound (Theorem 7.7). Below we describe an idea for reducing the upper

bound to poly(log∗ |X |).
In our recursive construction for the lower bound, we took n elements (x1, . . . ,xn) and

generated n + 1 elements where y0 is a random element (independent of the xi ’s), and

every xi is the length of the longest common prefix of y0 and yi . Therefore, a change

limited to one xi affects only one yi and privacy is preserved (assuming that our future

manipulations on (y0, . . . , yn) preserve privacy). While the representation length of domain

elements grows exponentially on every step, the database size grows by 1. This resulted in

the Ω(log∗ |X |) lower bound.

In RecPrefix on the other hand, every level of recursion shrank the database size by a

factor of 1
2 , and hence, we required a sample of (roughly) 2log∗ |X | elements. Specifically,
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in each level of recursion, two input elements y2j−1, y2j were paired and a new element zj
was defined as the length of their longest common prefix. As with the lower bound, we

wanted to ensure that a change limited to one of the inputs affects only one new element,

and hence, every input element is paired only once, and the database size shrinks.

If we could pair input elements twice then the database size would only be reduced

additively (which will hopefully result in a poly(log∗ |X |) upper bound). However, this

must be done carefully, as we are at risk of deteriorating the privacy parameter ε by a

factor of 2 and thus remaining with an exponential dependency in log∗ |X |. Consider the

following thought experiment for pairing elements.

Input: (x1, . . . ,xn) ∈ Xn.

1. Let (y0
1 , . . . , y

0
n) denote a random permutation of (x1, . . . ,xn).

2. For t = 1 to log∗ |X |:

For i = 1 to (n−t), let yti be the length of the longest common prefix of

yt−1
i and yt−1

i+1 .

As (most of the) elements are paired twice on every step, the database size reduces

additively. In addition, every input element xi affects at most t + 1 elements at depth t,

and the privacy loss is acceptable. However, this still does not solve the problem. Recall

that every iteration of RecPrefix begins by randomly shuffling the inputs. Specifically, we

needed to ensure that (w.h.p.) the number of “close” pairs is limited. The reason was that

if a “not close” pair agrees on a prefix L, then L is the prefix of “a lot” of other elements as

well, and we could privately identify L. In the above process we randomly shuffled only

the elements at depth 0. Thus we do not know if the number of “close” pairs is small at

depth t > 0. On the other hand, if we changed the pairing procedure to shuffle at every

step, then each input element xi might affect 2t elements at depth t, causing the privacy

loss to deteriorate rapidly.

7.4 Private PAC Learning vs. Private Empirical Learning

Recall that a PAC learner for a concept class C is required, given a labeled sample, to

output a hypothesis with small error w.r.t. the target function and, importantly, w.r.t. the
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underlying distribution. We now define the notion of an empirical learner which is similar to

a PAC learner where accuracy is measured w.r.t. the fixed input database.

Definition 7.17 (Empirical Learner). Algorithm A is an (α,β)-accurate empirical learner

for a concept class C over X using hypothesis class H with sample complexity m if for every

c ∈ C and for every database S = ((xi , c(xi)), . . . , (xm, c(xm))) ∈ (X × {0,1})m algorithm A outputs

a hypothesis h ∈H satisfying Pr[errorS(c,h) ≤ α] ≥ 1− β. The probability is taken over the coin

tosses of A.

Note that without privacy (and ignoring computational efficiency) identifying a hypoth-

esis with small empirical error is trivial for every concept class C and for every database

of size at least 1. This is not the case with (ε,δ)-differential privacy, and it can be shown

that the sample complexity of every empirical learner for a concept class C is at least

Ω( 1
αε VC(C)) (see [17] for a similar analysis).

In the next section we translate our bounds for the interior point problem to bounds

on the sample complexity of empirically learning threshold functions (properly). In order

to obtain bounds on the sample complexity of properly PAC learning thresholds, we now

show that empirical learning and PAC learning are equivalent under differential privacy.

While this equivalence is not limited to threshold functions, we state it specifically for

thresholds in order to obtain better bounds.

One direction follows immediately from a standard generalization bound for learning

thresholds (Lemma 3.19):

Lemma 7.18. Any algorithm A for empirically learning THRESHX with (α,β)-accuracy is also a

(2α,β+β′)-accurate PAC learner for THRESHX when given at least max{n,4ln(2/β′)/α} samples.

For the other direction, we note that a distribution-free learner must perform well on

the uniform distribution on the rows of any fixed database, and thus must be useful for

outputting a consistent hypothesis on such a database. Thus if we have a PAC learner

A, the mechanism Ã that samples m rows from its input database D ∈ (X × {0,1})n and

runs A on the result should output a consistent hypothesis for D. The random sampling

has two competing effects on privacy. On one hand, the possibility that an individual is

sampled multiple times incurs additional privacy loss. On the other hand, if n > m, then a

“secrecy-of-the-sample” argument shows that random sampling actually improves privacy,

107



since any individual is unlikely to have their data affect the computation at all. Refining

an argument of Kasiviswanathan et al. [67], we show that if n is only a constant factor

larger than m, these two effects offset, and the resulting mechanism is still differentially

private.

Lemma 7.19. Fix ε ≤ 1 and let A be an (ε,δ)-differentially private algorithm operating on

databases of size m. For n ≥ 2m, construct an algorithm Ã that on input a database D of

size n, subsamples (with replacement) m rows from D, and runs A on the result. Then Ã is

(ε̃, δ̃)-differentially private for

ε̃ = 6εm/n and δ̃ = exp(6εm/n)
4m
n
· δ.

Proof. Let D,D ′ be adjacent databases of size n, and suppose without loss of generality

that they differ on the last row. Let T be a random variable denoting the sequence of

indices sampled by Ã, and let ℓ(T ) be the multiplicity of index n in T . Fix a subset S of

the range of Ã. For each k = 0,1, . . . ,m let

pk = Pr[ℓ(T ) = k] =
(
m
k

)
n−k(1− 1/n)m−k =

(
m
k

)
(n− 1)−k(1− 1/n)m,

qk = Pr[A(D |T ) ∈ S |ℓ(T ) = k],

q′k = Pr[A(D ′ |T ) ∈ S |ℓ(T ) = k].

Here, D |T denotes the subsample of D consisting of the indices in T , and similarly for D ′ |T .

Note that q0 = q′0, since D |T = D ′ |T if index n is not sampled. Our goal is to show that

Pr[Ã(D) ∈ S] =
m∑
k=0

pkqk ≤ eε̃
m∑
k=0

pkq
′
k + δ̃ = eε̃ Pr[Ã(D ′) ∈ S] + δ̃.

To do this, we first show that

qk ≤ eεqk−1 + δ.

To establish this inequality, we define a coupling of the conditional random variables

U = (T |ℓ(T ) = k) and U ′ = (T |ℓ(T ) = k − 1) with the property that U and U ′ are always at

Hamming distance 1 (and hence D |U and D |U ′ are neighbors). Specifically, consider the
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joint distribution (U,U ′) over [n]m × [n]m sampled as follows. Let I ′ ⊆ [m] be a random

set of indices with |I ′ | = k − 1. Let i be a random index in [m] − I ′, and let I = I ′ ∪ {i}.
Define U and U ′ by setting Uj for j ∈ I , setting U ′j = n for j ∈ I ′, setting Uj = U ′j to be a

random element of [m− 1] for each j < I ′, and setting Ui to be random element of [m− 1].

One can verify that the marginal distributions of U and U ′ are indeed uniform over the

sequences in [n]m with ℓ(U ) = k and ℓ(U ′) = k − 1, and moreover that U and U ′ are always

at Hamming distance 1 apart, differing only at index i. Thus,

qk = Pr[A(D |T ) ∈ S |ℓ(T ) = k]

= E
(U,U ′)

[Pr[A(D |U ) ∈ S]]

≤ E
(U,U ′)

[eε Pr[A(D |U ′ ) ∈ S] + δ]

= eε Pr[A(D |T ) ∈ S |ℓ(T ) = k − 1] + δ

= eεqk−1 + δ.

Hence,

qk ≤ ekεq0 +
ekε − 1
eε − 1

δ.

Hence,

Pr[Ã(D) ∈ S] =
m∑
k=0

pkqk

≤
m∑
k=0

(
m
k

)
(n− 1)−k(1− 1/n)m

(
ekεq0 +

ekε − 1
eε − 1

δ

)

= q0(1− 1/n)m
m∑
k=0

(
m
k

)(
eε

n− 1

)k
+

δ
eε − 1

(1− 1/n)m
m∑
k=0

(
m
k

)(
eε

n− 1

)k
− δ
eε − 1

= q0(1− 1/n)m
(
1 +

eε

n− 1

)m
+

δ
eε − 1

(1− 1/n)m
(
1 +

eε

n− 1

)m
− δ
eε − 1

= q0

(
1− 1

n
+
eε

n

)m
+

(
1− 1

n + eε
n

)m
− 1

eε − 1
δ. (7.2)
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Similarly, we also have that

Pr[Ã(D ′) ∈ S] ≥ q0

(
1− 1

n
+
e−ε

n

)m
−

(
1− 1

n + e−ε
n

)m
− 1

e−ε − 1
δ. (7.3)

Combining inequalities 7.2 and 7.3 we get that

Pr[Ã(D) ∈ S] ≤
 1− 1

n + eε
n

1− 1
n + e−ε

n

m ·
Pr[Ã(D ′) ∈ S] +

1−
(
1− 1

n + e−ε
n

)m
1− e−ε

δ

+

(
1− 1

n + eε
n

)m
− 1

eε − 1
δ,

proving that A′ is (ε̃, δ̃)-differentially private for

ε̃ ≤ m · ln
 1 + eε−1

n

1 + e−ε−1
n

 ≤ 6εm
n

and

δ̃ ≤ exp(6εm/n)
1−

(
1 + e−ε−1

n

)m
1− e−ε

· δ+

(
1 + eε−1

n

)m
− 1

eε − 1
· δ

≤ exp(6εm/n)
1− exp

(
2 e−ε−1

n/m

)
1− e−ε

· δ+
exp

(
eε−1
n/m

)
− 1

eε − 1
· δ

≤ exp(6εm/n)
2m
n
· δ+

2m
n
· δ

≤ exp(6εm/n)
4m
n
· δ.

We now use Lemma 7.19 to complete the equivalence:

Lemma 7.20. Suppose A is an (ε,δ)-differentially private (α,β)-accurate PAC learner for a

concept class C with sample complexity m. Then there is an (ε,δ)-differentially private (α,β)-

accurate empirical learner for C with sample complexity n = 9m. Moreover, if A is proper, then

so is the resulting empirical learner.

Proof. Consider a database D = {(xi , yi)} ∈ (X × {0,1})n. Let D denote the uniform distribu-

tion over the rows of D. Then drawing m i.i.d. samples fromD is equivalent to subsampling
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m rows of D (with replacement). Consider the algorithm Ã that subsamples (with replace-

ment) m rows from D and runs A on it. Then with probability at least 1− β, algorithm

A outputs an α-good hypothesis on D, which is in turn an α-consistent hypothesis for

D. Moreover, by Lemma 7.19 (secrecy-of-the-sample), algorithm A is (ε,δ)-differentially

private.

7.5 Private Learning of Thresholds vs. the Interior Point

Problem

We show that with differential privacy, there is a Θ(1/α) multiplicative relationship be-

tween the sample complexities of properly PAC learning thresholds with (α,β)-accuracy

and of solving the interior point problem with error probability Θ(β). Specifically, we

show

Theorem 7.21. Let X be a totally ordered domain. Then,

1. If there exists an (ε,δ)-differentially private algorithm solving the interior point problem

on X with error probability β and sample complexity n, then there is a (2ε, (1 + eε)δ)-

differentially private (2α,2β)-accurate proper PAC learner for THRESHX with sample

complexity max
{
n

2α ,
4log(2/β)

α

}
.

2. If there exists an (ε,δ)-differentially private (α,β)-accurate proper PAC learner for THRESHX
with sample complexity n, then there is a (2ε, (1 + eε)δ)-differentially private algorithm

that solves the interior point problem on X with error β and sample complexity 27αn.

By the equivalence between empirically learning thresholds and PAC learning thresh-

olds (see the previous section), it suffices to show a Θ(1/α) relationship between the sample

complexity of solving the interior point problem and the sample complexity of empirically

learning thresholds.

Lemma 7.22. Let X be a totally ordered domain. Then,

1. If there exists an (ε,δ)-differentially private algorithm solving the interior point problem

on X with error probability β and sample complexity n, then there is a (2ε, (1 + eε)δ)-
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differentially private algorithm for properly and empirically learning thresholds with

(α,β)-accuracy and sample complexity n/(2α).

2. If there exists an (ε,δ)-differentially private algorithm that is able to properly and empiri-

cally learn thresholds on X with (α,β)-accuracy and sample complexity n/(3α), then there

is a (2ε, (1 + eε)δ)-differentially private algorithm that solves the interior point problem on

X with error β and sample complexity n.

Proof. For the first direction, letA be a private algorithm for the interior point problem on

databases of size n. Consider the algorithm A′ that, on input a database D of size n/(2α),

runs A′ on a database D ′ consisting of the largest n/2 elements of D that are labeled 1

and the smallest n/2 elements of D that are labeled 0. If there are not enough of either

such element, pad D ′ with min{X}’s or max{X}’s, respectively. Note that if x is an interior

point of D ′ then cx is a threshold function with error at most n/2
n/(2α) on D, and is hence

α-consistent with D. For privacy, note that changing one row of D changes at most two

rows of D ′. Hence, applying algorithm A preserves (2ε, (eε + 1)δ)-differential privacy.

For the reverse direction, suppose A′ privately finds an α-consistent threshold func-

tions for databases of size n/(3α). Define A on a database D ′ ∈ Xn to label the smaller

n/2 points 1 and the larger n/2 points 0 to obtain a labeled database D ∈ (X × {0,1})n, pad

D with an equal number of (min{X},1) and (max{X},0) entries to make it of size n/(3α),

and run A′ on the result. Note that if cx is a threshold function with error at most α on

D then x is an interior point of D ′, as otherwise cx has error at least n/2
n/(3α) > α on D. For

privacy, note that changing one row of D ′ changes at most two rows of D. Hence, applying

algorithm A′ preserves (2ε, (eε + 1)δ)-differential privacy.

7.6 Thresholds in High Dimension

We next show that the bound of Ω(log∗ |X |) on the sample complexity of private proper-

learners for THRESHX extends to conjunctions of ℓ independent threshold functions in ℓ

dimensions. As we will see, every private proper-learner for this class requires a sample of

Ω(ℓ · log∗ |X |) elements.

The significance of this lower bound is twofold. First, for reasonable settings of param-

eters (e.g., δ is negligible and items in X are of polynomial bit length in n), our Ω(log∗ |X |)
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lower bound for threshold functions is dominated by the dependence on log(1/δ) in the

upper bound. However, ℓ · log∗ |X | can still be much larger than log(1/δ), even when δ is

negligible in the bit length of items in Xℓ. Second, the lower bound for threshold functions

only yields a separation between the sample complexities of private and non-private

learning for a class of VC dimension 1. Since the concept class of ℓ-dimensional thresholds

has VC dimension of ℓ, we obtain an ω(VC(C)) lower bound for concept classes even with

arbitrarily large VC dimension.

Consider the following extension of THRESHX to ℓ dimensions.

Definition 7.23. For a totally ordered set X and a⃗ = (a1, . . . , aℓ) ∈ Xℓ define the concept

ca⃗ : Xℓ→ {0,1} where ca⃗(x⃗) = 1 if and only if for every 1 ≤ i ≤ ℓ it holds that xi ≤ ai . Define the

concept class of all thresholds over Xℓ as THRESHℓX = {ca⃗}a⃗∈Xℓ .

Note that the VC dimension of THRESHℓX is ℓ. We obtain the following lower bound on

the sample complexity of privately learning THRESH
ℓ
X .

Theorem 7.24. For every n,ℓ ∈ N, α > 0, and δ ≤ ℓ2/(1500n2), any (ε = 1
2 ,δ)-differentially

private and (α,β = 1
8 )-accurate proper learner for THRESHℓX requires sample complexity n =

Ω( ℓα log∗ |X |).

This is the result of a general hardness amplification theorem for private proper

learning. We show that if privately learning a concept class C requires sample complexity

n, then learning the class Cℓ of conjunctions of ℓ different concepts from C requires sample

complexity Ω(ℓn).

Definition 7.25. For ℓ ∈ N, a data universe X and a concept class C over X, define a concept

class Cℓ over Xℓ to consist of all c⃗ = (c1, . . . , cℓ), where c⃗ : Xℓ → {0,1} is defined by c⃗(x⃗) =

c1(x1)∧ c2(x2)∧ · · · ∧ cℓ(xℓ).

Theorem 7.26. Let α,β,ε,δ > 0. Let C be a concept class over a data universe X, and assume

there is a domain element p1 ∈ X s.t. c(p1) = 1 for every c ∈ C. Let D be a distribution over

databases containing n examples from X labeled by a concept in C, and suppose that every

(ε,δ)-differentially private algorithm fails to find an (α/β)-consistent hypothesis h ∈ C for D ∼ D
with probability at least 2β. Then any (ε,δ)-differentially private and (α,β)-accurate proper

learner for Cℓ requires sample complexity Ω(ℓn).
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Note that in the above theorem we assumed the existence of a domain element p1 ∈ X
on which every concept in C evaluates to 1. To justify the necessity of such an assumption,

consider the class of point functions over a domain X defined as POINTX = {cx : x ∈ X} where

cx(y) = 1 iff y = x. As was shown in [11], this class can be privately learned using Oα,β,ε,δ(1)

labeled examples (i.e., the sample complexity has no dependency in |X |). Observe that since

there is no x ∈ X on which every point concept evaluates to 1, we cannot use Theorem 7.26

to lower bound the sample complexity of privately learning POINT
ℓ
X . Indeed, the class

POINT
ℓ
X is identical (up to renaming of domain elements) to the class POINTXℓ, and can be

privately learned using Oα,β,ε,δ(1) labeled examples.

Remark 7.27. Similarly to Theorem 7.26 it can be shown that if privately learning a concept

class C requires sample complexity n, and if there exists a domain element p0 ∈ X s.t. c(p0) = 0

for every c ∈ C, then learning the class of disjunctions of ℓ concepts from C requires sample

complexity ℓn.

Proof of Theorem 7.26. Assume toward a contradiction that there exists an (ε,δ)-differentially

private and (α,β)-accurate proper learnerA for Cℓ using ℓn/9 samples. Recall that the task

of privately outputting a good hypothesis on any fixed database is essentially equivalent

to the task of private PAC learning (see Section 7.5). We can assume, therefore, that A
outputs an α-consistent hypothesis for every fixed database of size at least n′ ≜ ℓn with

probability at least 1− β.

We construct an algorithm SolveD which uses A in order to find an (α/β)-consistent

threshold function for databases of size n from D. Algorithm SolveD takes as input a set

of n labeled examples in X and applies A on a database containing n′ labeled examples in

Xℓ. The n input points are embedded along one random axis, and random samples from

D are placed on each of the other axes (with n labeled points along each axis).
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Algorithm SolveD
Input: Database D = (xi , yi)

n
i=1 ∈ (X × {0,1})n.

1. Initiate S as an empty multiset.

2. Let r be a (uniform) random element from {1,2, . . . , ℓ}.

3. For i = 1 to n, let z⃗i ∈ Xℓ be the vector with rth coordinate xi , and all other

coordinates p1 (recall that every concept in C evaluates to 1 on p1). Add to S the

labeled example (z⃗i , yi).

4. For every axis t , r:

(a) Let D ′ = (x′i , y
′
i )
n
i=1 ∈ (X × {0,1})n denote a (fresh) sample from D.

(b) For i = 1 to n, let z⃗′i ∈ X
ℓ be the vector whose tth coordinate is x′i , and its other

coordinates are p1. Add to S the labeled example (z⃗′i , y
′
i ).

5. Let (h1,h2, . . . ,hℓ) = h⃗←A(S).

6. Return hr .

First observe that SolveD is (ε,δ)-differentially private. To see this, note that a change

limited to one input entry affects only one entry of the multiset S. Hence, applying the

(ε,δ)-differentially private algorithm A on S preserves privacy.

Consider the execution of SolveD on a database D of size n, sampled from D. We

first argue that A is applied on a multiset S correctly labeled by a concept from Cℓ. For

1 ≤ t ≤ ℓ let (xti , y
t
i )
n
i=1 be the sample from D generated for the axis t, let (z⃗ti , y

t
i )
n
i=1 denote

the corresponding elements that were added to S, and let ct be s.t. ct(x
t
i ) = yti for every

1 ≤ i ≤ n. Now observe that

(c1, c2, . . . , cℓ)(z⃗
t
i ) = c1(p1)∧ c2(p1)∧ · · · ∧ ct(xti )∧ · · · ∧ cℓ(p1) = yti ,

and hence S is perfectly labeled by (c1, c2, . . . , cℓ) ∈ Cℓ.

By the properties of A, with probability at least 1− β we have that h⃗ (from step 5) is

an α-consistent hypothesis for S. Assuming that this is the case, there could be at most

βℓ “bad” axes on which h⃗ errs on more than αn/β points. Moreover, as r is a random axis,
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and as the points along the rth axis are distributed exactly like the points along the other

axes, the probability that r is a “bad” axis is at most βℓ
ℓ = β. Overall, SolveD outputs an

(α/β)-consistent hypothesis with probability at least (1− β)2 > 1− 2β. This contradicts the

hardness of the distribution D.

Now the proof of Theorem 7.24 follows from the lower bound on the sample complexity

of privately finding an α-consistent threshold function (see Section 7.2):

Lemma 7.28 (Follows from Lemma 7.6 and 7.22). There exists a constant λ > 0 s.t. the

following holds. For every totally ordered data universe X there exists a distribution D over

databases containing at most n = λ
α log∗ |X | labeled examples from X such that every (1

2 ,
1

50n2 )-

differentially private algorithm fails to find an α-consistent threshold function for D ∼ D with

probability at least 1
4 .

We remark that, in general, an algorithm for query release can be used to construct

a private learner with similar sample complexity. Hence, Theorem 7.24 also yields the

following lower bound on the sample complexity of releasing approximated answers to

queries from THRESH
ℓ
X .

Theorem 7.29. For every n,ℓ ∈ N, α > 0, and δ ≤ ℓ2/(7500n2), any ( 1
150 ,δ)-differentially

private algorithm for releasing approximated answers for queries from THRESH
ℓ
X with (α, 1

150 )-

accuracy must have sample complexity n = Ω( ℓα log∗ |X |).

In order to prove the above theorem we use our lower bound on privately learning

THRESH
ℓ
X together with the following reduction from private learning to query release.

Lemma 7.30 ([56, 11]). Let C be a class of predicates. If there exists a ( 1
150 ,δ)-differentially

private algorithm capable of releasing queries from C with ( 1
150 ,

1
150 )-accuracy and sample

complexity n, then there exists a (1
5 ,5δ)-differentially private (1

5 ,
1
5 )-accurate PAC learner for C

with sample complexity O(n).

Proof of Theorem 7.29. Let δ ≤ ℓ2/(7500n2). Combining our lower bound on the sample

complexity of privately learning THRESH
ℓ
X (Theorem 7.24) together with the reduction

stated in Lemma 7.30, we get a lower bound of m≜Ω(ℓ · log∗ |X |) on the sample complexity

of every ( 1
150 ,δ)-differentially private algorithm for releasing queries from THRESH

ℓ
X with

( 1
150 ,

1
150 )-accuracy.
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In order to refine this argument and get a bound that incorporates the approxima-

tion parameter, let α ≤ 1/150, and assume towards contradiction that there exists a

( 1
150 ,δ)-differentially private algorithm Ã for releasing queries from THRESH

ℓ
X with (α, 1

150 )-

accuracy and sample complexity n < m/(150α).

We will derive a contradiction by using Ã in order to construct a ( 1
150 ,

1
150 )-accurate

algorithm for releasing queries from THRESH
ℓ
X with sample complexity less than m. Con-

sider the algorithm A that on input a database D of size 150αn, applies Ã on a database

D̃ containing the elements in D together with (1− 150α)n copies of (minX). Afterwards,

algorithm A answers every query c ∈ THRESHℓX with ac ≜
1

150α (ãc −1 + 150α), where {ãc} are

the answers received from Ã.

Note that as Ã is ( 1
150 ,δ)-differentially private, so is A. We now show that A’s output

is 1
150-accurate for D whenever Ã’s output is α-accurate for D̃, which happens with all

but probability 1
150 . Fix a query c ∈ THRESHℓX and assume that c(D) = t/(150αn). Note that

c(minX) = 1, and hence, c(D̃) = t/n+ (1− 150α). By the utility properties of Ã,

ac =
1

150α
(ãc − 1 + 150α)

≤ 1
150α

(c(D̃) +α − 1 + 150α)

=
1

150α
(t/n+α)

= t/(150αn) + 1/150

= c(D) + 1/150.

Similar arguments show that ac ≥ c(D)− 1/150, proving that A is (1/150,1/150)-accurate

and contradicting the lower bound on the sample complexity of such algorithms.
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Chapter 8

Conclusions and Open Problems

The unifying theme of this thesis is the exploration of intersection points between dif-

ferential privacy and learning theory. In chapters 5, 6, and 7, we considered the task of

designing private analogues to existing PAC learning algorithms, and studied the price

(in terms of the sample complexity) of enforcing privacy guarantees on top of the utility

guarantees. In Chapter 4, we studied the possibility of using differential privacy as a

tool in order to construct new learning algorithms, specifically, for answering adaptively

chosen queries on a distribution using i.i.d. samples from it.

8.1 The Sample Complexity of Private Learners

We have made important progress towards understanding the sample complexity of private

learners. For the case of pure differential privacy, in Chapter 5, we presented a combi-

natorial characterization for the sample complexity of (improper) learners. Afterwards,

in Chapter 6, we showed that relaxing the privacy guarantees from pure to approximate

differential privacy can, in some cases, drastically reduce the necessary sample complex-

ity. For example, while every pure-private learner for the class of threshold functions

over a domain X requires Ω(log |X |) samples [51], we construct an approximate-private

proper-learner for thresholds using 2O(log∗ |X |) samples.

Open Question 1: Construct a generic learner preserving approximate

differential privacy and exhibiting better sample complexity than the generic

constructions of pure-private learners.

In Chapter 7 we revisit the sample complexity of privately learning thresholds, and

prove that a dependency in log∗ |X | is necessary – every approximate-private proper-learner
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for thresholds must use Ω(log∗ |X |) samples. Closing the gap between log∗ |X | and 2log∗ |X |

remains an intriguing open question.

Open Question 2: What is the sample complexity of properly learning

threshold functions under approximate differential privacy?

While our Ω(log∗ |X |) lower bound shows that approximate-private proper-learners can

require asymptotically more samples than non-private learners, this separation is very

mild. Showing a stronger separation would be very interesting.

Open Question 3: Are there cases where the gap in the sample complexity

of non-private learning and approximate-private proper-learning is, say,

Ω(log |X |)?

Furthermore, our results still leave open the possibility that improperly learning thresh-

olds with approximate differential privacy can be done using a constant sample complexity.

Open Question 4: What is the sample complexity of improperly learning

threshold functions under approximate differential privacy?

Actually, no lower bounds are currently known on the sample complexity of approx-

imate private improper-learners, and it might be the case that the sample complexity

of approximate-private improper-learners is characterized by the VC dimension, as is

non-private learning.

Open Question 5: Explore the sample complexity of approximate-private

improper-learning.

8.2 Differential Privacy as a Tool – Adaptive Queries

An interesting aspect of the theoretical research in differential privacy is that it had

produced results that are not directly focused on privacy: Some algorithmic techniques for

online computation can be formulated and analyzed using the terminology of differential

privacy [66], and differential privacy has proved useful as a tool for constructing economic

mechanisms and games (e.g., [74, 77, 63, 79]).

A recent line of work uses differential privacy as a tool for obtaining statistical utility

from data. Dwork et al. [40] model and study the problem of false discovery caused
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by adaptivity in statistical analysis of data. They observe that the problem of false

discovery can be related to differential privacy, a deep insight that allowed them to

use tools developed for differentially private analyses for ensuring statistical validity in

adaptive data analysis.

In Chapter 4, we simplified and strengthened the results of Dwork et al., providing

tight bounds on the probability of false detection based on the parameters of the private

computation. As our connection between differential privacy and generalization is optimal,

any significant improvement to our bounds must come from using an alternative approach.

We know that differential privacy is not necessary in order to avoid false discovery in

adaptive data analysis; however, we do not know if a different approach can achieve better

results.

Open Question 6: Can we achieve better guarantees for ensuring statistical

validity in adaptive data analysis without differential privacy?

Towards resolving this question, it is interesting to understand whether the problem

can be solved using a deterministic mechanism. We can show that, at least in some settings,

this is possible (by constructing a very unnatural deterministic mechanism that uses

randomness from its input sample to instantiate a differentially private mechanism).

Open Question 7: Is there a natural deterministic mechanism for answer-

ing a non-trivial number of adaptive queries?

The problem was studied from a computational perspective by Ullman, Steinke, and

Hardt [61, 85], who proved computational hardness of preventing false discovery in

adaptive settings. Currently, there is a gap between the lower and upper bounds in the

dependency on the accuracy parameter.

Open Question 8: Close the gaps between the current upper and lower

bounds for ensuring statistical validity in adaptive data analysis.

We hope that providing answers to the above questions will lead to further understand-

ing of how concepts like differential privacy can be used as tools for statistical inference

and machine learning.
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