
A (rand) algorithm 𝓐 is 𝝐, 𝜹  differentially private if for all 
neighboring databases 𝑺𝟏, 𝑺𝟐 and for all sets of outputs 𝑭: 

  

𝐏𝐫 𝓐 𝑺𝟏 ∈ 𝑭 ≤ 𝒆𝝐 ⋅ 𝐏𝐫 𝓐 𝑺𝟐 ∈ 𝑭 + 𝜹 
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What is k-means clustering? 

Given: Data points  𝑺 = 𝒙𝟏, … , 𝒙𝒏 ∈ ℝ𝒅 𝒏
 

 

“Task”: Identify groups of data points, and assign each point to one of the groups 
 
Intuition: Clusters have “centers”, and points are nearer to the center of their cluster 
 

Goal: Identify 𝒌 centers  𝑪 = 𝒖𝟏, … , 𝒖𝒌 ∈ ℝ𝒅 𝒌
  that minimize 𝐜𝐨𝐬𝐭 𝑪 =  𝐦𝐢𝐧
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What is differential privacy? 

Ref Runtime Bounds (informal) 

MT’07 𝒏𝒌𝒅 𝐎𝐏𝐓 + 𝑶 𝒌 ⋅ 𝒅  

GLMRT’10 𝒏𝒅 𝐎 𝟏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟐 ⋅ 𝒅  

BDLMZ’17 𝐩𝐨𝐥𝐲 𝑶 𝐥𝐨𝐠𝟑𝒏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟐 + 𝒅  

FXZR’17 𝐩𝐨𝐥𝐲 𝑶 𝒌 ⋅𝐎𝐏𝐓 + 𝑶 𝒌𝟑/𝟐 ⋅ 𝒅  

New 𝐩𝐨𝐥𝐲 𝑶 𝟏 ⋅𝐎𝐏𝐓 + 𝑶 𝒌 ⋅ 𝒅  

1. Let  𝒀  be a finite discretization of the unit ball  
 

2. Let  𝑪 ⊆ 𝒀  be an arbitrary set of  𝒌  centers 
 

3. For 𝑻 ≈ 𝒌 ⋅ 𝐥𝐨𝐠𝒏  rounds: 
 

a) Choose  𝒙, 𝒚 ∈ 𝑪 × 𝒀  approximately minimizing  𝐜𝐨𝐬𝐭 𝑪∖ 𝒙 ∪ 𝒚 . 
 

b)Set  𝑪 ← 𝑪∖ 𝒙 ∪ 𝒚  
 

Result: Constant multiplicative error w.r.t. centers in 𝒀. Runtime ≈ 𝒀  
 

⟹ Suffices to privately identify a small set of candidate centers 𝒀 
      containing a subset of k candidates with low k-means cost 

Previous work: local search [GLMRT’10], [BDLMZ’17] 

• Let 𝒖𝟏, … , 𝒖𝒌 denote 𝒌 optimal centers, and 𝑺𝟏, … , 𝑺𝒌 the induced clusters 
 

• Obs1: Can ignore small clusters (pay on additive error) 
 

• Obs2: Let 𝒓𝒊 = min s.t. 𝕭 𝒖𝒊, 𝒓𝒊 ∩ 𝑺𝒊 ≥ 𝑺𝒊 /𝟐. Only need 𝒚𝒊 ∈ 𝒀 s.t. 𝒚𝒊 − 𝒖𝒊 ≤ 𝑶 𝒓𝒊  

Find 𝒀 containing 𝒌 centers with low cost 

Suffices to solve: Privately identify a small set 𝒀 ⊆ ℝ𝒅 such that: For every 
 

“large enough” cluster 𝑷 ⊆ 𝑺, w.h.p. ∃𝒚 ∈ 𝒀 s.t. 𝒚 − 𝐚𝐯𝐠 𝑷 ≤ 𝑶 𝐝𝐢𝐚𝐦 𝑷  

Useful Tool: LSH [Indyk&Motwani] 

• Maximize the probability of collision for similar items 
• Minimize the probability of collision for dissimilar items 

Hopefully: “Heavy” buckets correspond to clusters 

• k-means under local differential privacy with constant 
multiplicative error 

• Results also hold for k-medians 
• Private coresets for k-means and k-medians 

Additional Results 

Some of the Challenges 
• How to capture small clusters? 
• How to implement local search in the local model? 
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• Obs3: Suffices to capture every “large enough” cluster 𝑷 of diameter (roughly) 𝒓, and 
to execute in parallel with exponentially growing choices for 𝒓 


