Characterizing the Sample Complexity of Private Learners*

Amos Beimel, Kobbi Nissim, Uri Stemmer
CS BGU

*Will be presented in ITCS2013
What is Private Learning?

Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith 08

- PAC learner (Probably Approximately Correct).
- ε-differentially private.

This work: characterizing the sample complexity of private learners.

- Analogous to VC dim. for non-private learning.
Previous Work

- [KLNRS08] every finite concept class \mathcal{C} can be learned privately using $\ln |\mathcal{C}|$ samples.

- Beimel, Kasiviswanathan, Nissim (2010): sample complexity $\ln |\mathcal{H}|$
 - \mathcal{H} = minimal (deterministic) representation of \mathcal{C}.

- [BKN10] $\ln |\mathcal{H}|$ samples are NOT necessary.
Probabilistic Representation

[BKN10] Representation for class \mathcal{C}:
A hypothesis class \mathcal{H} s.t. for every $c \in \mathcal{C}$, there exists a hypothesis $h \in \mathcal{H}$ that is close to c.

Our Contribution - Probabilistic Rep. for \mathcal{C}:
A list of hypothesis classes $\{\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_r\}$ s.t. for every $c \in \mathcal{C}$, w.h.p., a randomly chosen \mathcal{H}_i contains a hypothesis close to c.
The “size” of a list \(\{\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_r\} \) is defined as \(\max \ln |\mathcal{H}_i| \).

RepDim: The Representation Dimension of \(\mathcal{C} \) is its minimal probabilistic representation.

Characterization: \(\Theta(RepDim(\mathcal{C})) \) samples are necessary and sufficient for privately learning \(\mathcal{C} \).
Representation ⇒ PPAC

Learning Algorithm:

Input: a labeled sample.

1. Randomly choose a hypothesis class \mathcal{H}_i from the list.
2. Use the exponential mechanism to choose a hypothesis from \mathcal{H}_i.
A PAC learner has to output (w.h.p) a good hypothesis \(h \) for a correctly sampled data.

- Differential privacy guarantees a non-zero probability for outputting \(h \) on an arbitrary data.

- For \(i=1 \) to \(r \): Construct \(\mathcal{H}_i \) by executing the learner several times.
Open Problem

• For class POINT:
 \[\text{RepDim} = \text{VC} = O(1). \]

• Open:
 A concept class for which \(\text{RepDim} > \text{VC} \).
The End.